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Titre: Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué.

Résumé: Cette thèse a pour objet les ordres, les valuations et les C-relations sur
les groupes, ainsi que les corps différentiels valués tels qu’étudiés par Rosenlicht. Elle
accomplit trois objectifs principaux. Le premier est d’introduire et d’étudier une notion
de quasi-ordre sur les groupes qui a pour but de réunir les ordres et les valuations dans
un même cadre. Nous donnons un théorème de structure des groupes munis d’un tel
quasi-ordre, ce qui nous permet ensuite de donner un “théorème de plongement de Hahn”
pour ces groupes. Le second objectif de cette thèse est de décrire les C-groupes à l’aide
des quasi-ordres. Nous donnons un théorème de structure pour les C-groupes, qui énonce
que tout C-groupe est un “mélange” de groupes ordonnés et de groupes valués. Nous
utilisons ensuite ce résultat pour caractériser les groupes C-minimaux à l’intérieur de la
classe des C-groupes. Le troisième objectif de cette thèse est d’introduire et d’étudier
une notion de rang différentiel d’un corps différentiel valué. Nous définissons cette notion
par analogie avec les notions de rang exponentiel d’un corps exponentiel et de rang de
différence d’un corps aux différences. Nous montrons que cette notion de rang n’est pas
tout à fait satisfaisante, et introduisons donc une meilleure notion de rang appelée le
rang différentiel déployé. Nous donnons ensuite une méthode pour définir une dérivation
“de type Hardy” sur un corps de séries formelles généralisées, ce qui nous permet de
construire des corps différentiels valués dont le rang différentiel et le rang différentiel
déployé ont été arbitrairement choisis.

Mots clefs: ordres, quasi-ordres, valuations, C-groupes, corps différentiels valués,
couples asymptotiques, C-minimalité.
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Title: Quasi-orders, C-groups and the differential rank of a differential-valued field.

Abstract: This thesis deals with orders, valuations and C-relations on groups, and
with differential-valued fields à la Rosenlicht. It achieves three main objectives. The first
one is to introduce and study a notion of quasi-order on groups meant to encompass
orders and valuations in a common framework. We give a structure theorem for groups
endowed with such a quasi-order, which then allows us to give a “Hahn’s embedding
theorem” for these groups. The second objective of this thesis is to describe C-groups
via quasi-orders. We give a structure theorem for C-groups, which basically states that
any C-group is a “mix” of ordered groups and valued groups. We then use this result
to characterize C-minimal groups inside the class of C-groups. The third objective of
this thesis is to introduce and study a notion of differential rank for differential-valued
fields. We define this notion by analogy with the exponential rank of an exponential
field and with the difference rank of a difference field. We show that this notion of rank
is not quite satisfactory, so we introduce a better notion of rank called the unfolded
differential rank. We then give a method to define “Hardy-type” derivations on fields of
generalized power series, which allows us to build differential-valued fields of arbitrary
given differential rank and unfolded differential rank.

Keywords: orders, quasi-orders, valuations, C-groups, differential-valued fields,
asymptotic couples, C-minimality.
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Zusammenfassung

Diese Doktorarbeit handelt von auf Gruppen definierten Ordnungen, Bewertungen
und C-Relationen, und von den von Rosenlicht eingeführten differentiell bewerteten
Körpern. Hier werden drei Ziele verfolgt. Das erste Ziel ist das Einführen und Studieren
von Quasiordnungen für abelsche Gruppen, die dazu dienen sollen, Bewertungen und
Ordnungen unter einem gemeinsamen Begriff zu behandeln. Das zweite Ziel ist die
Beschreibung der C-Gruppen mithilfe der Quasiordnungen und die Charakterisierung
der C-minimalen Gruppen. Das dritte Ziel ist das Einführen und Studieren eines Begriffs
von differentiellem Rang für differentiell bewertete Körper.

Obwohl Ordnungen und Bewertungen klassischerweise als unterschiedliche Themen
behandelt werden, existieren merkwürdige Ähnlichkeiten zwischen diesen beiden Objekten.
Aus diesem Grund wurde mehrmals versucht, eine Theorie zu entwickeln, die Ordnungen
und Bewertungen vereinigen würde. In [Fak87] schlug Fakhruddin vor, dieses Problem
mit Hilfe von Quasiordnungen (d.h. von binären Relationen, die reflexiv, transitiv und
total sind) zu lösen. Fakhruddin hat in [Fak87] den Begriff “quasi-geordneter Körper”
eingeführt, wobei die Quasiordnung bestimmte Bedingungen von Verträglichkeit mit den
Körperoperationen erfüllt. Geordnete und bewertete Körper sind zwei Beispiele von
solchen Strukturen (jede Bewertung induziert auf kanonische Weise eine Quasiordnung).
Noch merkwürdiger ist der Hauptsatz in [Fak87], der sagt, dass jede Quasiordnung auf
einem Körper entweder eine Ordnung oder eine Bewertung sein muss. Dann stellt sich
aber die Frage, ob eine ähnliche Behauptung auch für abelsche Gruppen gilt. Solch
eine Untersuchung wird dadurch motiviert, dass geordnete und bewertete Gruppen eine
wichtige Rolle in der Theorie der mit einem Operator versehenen bewerteten Körper
spielen. Falls zum Beispiel (G,ψ) das zu einem differentiell bewerteten Körper assoziierte
asymptotische Paar ist, ist G eine geordnete Gruppe und ψ eine Bewertung auf G. Die
Theorie der Quasiordnungen auf Gruppen bietet die Möglichkeit, gleichzeitig Eigen-
schaften von geordneten und von bewerteten Gruppen, sowohl wie auch die Interaktion
zwischen ihnen, zu entdecken.

Die Frage, ob die Fakhruddin’sche Dichotomie ein Analoges für abelsche Gruppen
besitzt, war der Startpunkt des Kapitels 3 meiner Doktorarbeit. Da führe ich den Begriff
“kompatible Quasiordnung” für abelsche Gruppen ein (Definition 3.1.1), was das Analoge
der in [Fak87] betrachteten Quasiordnungen ist. Ich habe schnell festgestellt, dass die
Fakhruddin’sche Dichotomie für Gruppen falsch ist: es gibt ja kompatible Quasiordnun-
gen, die weder Ordnungen noch Bewertungen sind (siehe Beispiel 3.1.2). Der Hauptsatz
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des Kapitels 3 ist ein Struktursatz (Satz 3.1.26) für mit einer kompatiblen Quasiordnung
versehene abelsche Gruppen. Dieser Satz sagt ungefähr, dass jede kompatible Quasiord-
nung eine “Mischung” aus Ordnung und Bewertung ist. Anders gesagt ist jede abelsche
Gruppe, die mit einer kompatiblen Quasiordnung versehen ist, eine Erweiterung einer
bewerteten Gruppe durch eine geordnete Gruppe. Außerdem ist der “geordnete Teil” der
Gruppe immer ein Anfangsstück der Gruppe.

Nachdem ich diesen Struktursatz bewiesen habe, habe ich versucht, manchen bekan-
nten Ergebnissen aus der Theorie der geordneten Strukturen ein Analoges für quasi-
geordnete Gruppen zu geben. Abschnitt 3.2 führt einen Begriff von Kompatibilität
zwischen Quasiordnungen und Bewertungen ein, der das Analoge zum Begriff “konvexe
Bewertung” ist. Im Satz 3.2.2 werden mehrere Charakterisierungen der Kompatibilität
gegeben. Ich habe aber dann festgestellt, dass es keinen “Baer-Krull-Satz” für kompatible
Quasiordnungen gibt (siehe Beispiel 3.2.5). Im Abschnitt 3.3 wird ein Produkt für mit
kompatiblen Quasiordnungen versehenen Gruppen eingeführt (Definition 3.3.1). Mithilfe
dieses Produkts wird dann der bekannte “Hahns-Einbettung-Satz” zu quasi-geordneten
Gruppen verallgemeinert (siehe Satz 3.3.8).

Im letzten Teil des Kapitels 3 definiere ich den Begriff “q.o.-Minimalität”, was eine
Verallgemeinerung der o-Minimalität für quasi-geordnete Gruppen ist. Diese Definition
beruht auf dem Begriff von “swiss cheese”, den Holly in [Hol95] für bewertete Körper
eingeführt hat. Danach wird gezeigt, dass jede kompatible Quasiordnung eine C-Relation
induziert, und dass die q.o.-Minimalität einer Gruppe zu ihrer C-Minimalität äquivalent
ist. Das öffnet den Weg für Kapitel 4, das sich mit C-Gruppen befasst.

Eine C-Relation (siehe [AN96]) ist eine drei-stellige Relation, die in der Menge der
Zweige eines Baums interpretierbar ist. Genauer gesagt: Wenn T ein Baum ist, in dem
jedes Paar (a, b) ein Infimum besitzt, und wenn M in der Menge aller Zweige von T
enthalten ist, dann können wir folgenderweise eine C-Relation auf M definieren: wir
sagen, dass C(x, y, z) genau dann wahr ist, wenn der Schnittpunkt von x und y kleiner
als der Schnittpunkt von y und z ist. Umgekehrt kann man zeigen, dass jede C-Relation
auf irgendwelcher Menge sich auf diese Weise in der Menge aller Zweige eines Baums
interpretieren lässt. In [MS96] wurden die Begriffe “C-Gruppe” und “C-Minimalität”
eingeführt. Eine C-Gruppe ist eine mit einer C-Relation versehene Gruppe, so dass
die C-Relation mit der Gruppenoperation verträglich ist. Die C-Minimalität ist ein
Analoges der o-Minimalität, wobei die Ordnung durch eine C-Relation ersetzt wird.
Bis jetzt gab es keine Beschreibung der C-Gruppen. Das Ziel des Kapitels 4 ist, die
C-Gruppen zu beschreiben und die C-minimalen Gruppen in der Klasse aller C-Gruppen
zu charakterisieren.

Am Ende des Kapitels 3 habe ich bemerkt, dass jede kompatible Quasiordnung eine
C-Relation induziert. Ich habe aber früh festgestellt, dass die C-Relation in manchen
abelschen C-Gruppen nicht so aus einer kompatiblen Quasiordnung stammt. Das bedeutet,
dass die Klasse der kompatiblen Quasiordnungen dafür nicht geeignet ist, die ganze Klasse
der C-Gruppen zu beschreiben. Dann habe ich aber herausgefunden, dass es eine andere
Art Quasiordnung gibt, die für das Studieren von allen (sogar von nicht unbedingt
abelschen) C-Gruppen geeignet ist; solche Quasiordnungen nenne ich C-Quasiordnungen
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(siehe Definition 4.1.2). Wenn (G, ., 1, C) eine (nicht unbedingt abelsche) C-Gruppe ist,
dann induziert C eine Quasiordnung auf G auf folgende Weise: x - y ist genau dann
wahr, wenn ¬C(x, y, 1). Eine C-Quasiordnung ist eine Quasiordnung, die auf diese Weise
von der C-Relation einer C-Gruppe induziert wird. Das Bemerkenswerte daran ist, dass
die C-Relation einer C-Gruppe durch die induzierte C-Quasiordnung völlig charakterisiert
wird: aus einer C-Quasiordnung kann man die C-Relation wieder konstruieren, von
der sie induziert wurde. Es gibt also eine bijektive Korrespondenz zwischen der Klasse
aller C-Quasiordnungen und der Klasse aller mit der Gruppenoperation verträglichen
C-Relationen.

C-Quasiordnungen bilden das Untersuchungsobjekt des Kapitels 4. Die ganze Unter-
suchung der C-Gruppen wird nicht durch direkte Arbeit mit C-Relationen durchgeführt,
sondern mit C-Quasiordnungen. Der Hauptsatz des Kapitels 4 ist der Satz 4.3.33, der
ein Struktursatz für C-Gruppen ist. Es ist schon bekannt, dass geordnete und bewertete
Gruppen zwei Beispiele von C-Gruppen sind (im Sinne, dass jede Ordnung und jede
Bewertung eine C-Relation induziert). Der Satz 4.3.33 sagt ungefähr, dass diese zwei
Beispiele die “elementaren Blöcke” aller C-Gruppen sind: jede C-Gruppe lässt sich aus
geordneten und bewerteten Gruppen konstruieren.

Im Abschnitt 4.4 wende ich den Satz 4.3.33 auf C-Minimale Gruppen an. Mein
Hauptsatz über C-minimalen Gruppen ist der Satz 4.4.37. Er sagt, dass jede C-minimale
abelsche Gruppe ein endliches direktes Produkt von o-minimalen und C-minimalen
bewerteten Gruppen ist.

Das letzte Kapitel dieser Doktorarbeit studiert differentiell bewertete Körper. Dabei
meine ich differentielle Körper, die mit einer differentiellen Bewertung (im von Rosenlicht
definierten Sinne, siehe [Ros80]) versehen sind. Im Kapitel 5 geht es darum, einen Begriff
von differentiellem Rang für differentiell bewertete Körper zu entwickeln.

Der Rang (beziehungsweise, der Hauptrang) eines bewerteten Körpers (K, v) ist der
Ordnungstyp der Menge aller Vergröberungen (“coarsenings”) (beziehungsweise, aller
Hauptvergröberungen) von v (wobei die Ordnung auf dieser Menge die Mengeninklu-
sion ist). Der Rang wird auf drei Stufen charakterisiert: auf dem Körper K, auf der
Bewertungsgruppe G von (K, v) (als die Menge aller konvexen Untergruppen von G)
und auf der Bewertungskette Γ von G (als die Menge aller Endstücke von Γ). Mehrere
Begriffe vom Rang für bewertete Körper mit einem Operator wurden auch definiert.
Als Beispiele davon kann man den exponentiellen Rang eines exponentiellen Körpers
nennen (siehe [Kuh00]) oder den σ-Rang eines Differenzkörpers (siehe [KMP17]). Die
Idee ist immer, einen Rang zu haben, der Information über das Verhalten des Operators
liefert. In [Kuh00] definiert die Autorin einen Begriff von exp-Kompatibilität für eine
Bewertung auf einem exponentiellen geordneten Körper (K,≤, exp). Sie definiert dann
den exponentiellen Rang (beziehungsweise, den exponentiellen Hauptrang) von (K, exp)
als den Ordnungstyp der Menge aller exp-kompatiblen Vergröberungen (beziehungsweise,
aller exp-Hauptvergröberungen) der archimedischen Bewertung. Sie zeigt dann, dass in
den von ihr betrachteten Körpern die Abbildung log eine Abbildung χ auf G induziert,
und dass der exponentielle Rang von (K, exp) zur Menge aller χ-abgeschlossenen kon-
vexen Untergruppen von G isomorph ist. Sie zeigt auch, dass χ eine Abbildung ζ auf Γ
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induziert, und dass der exponentielle Rang auch zur Menge aller ζ-abgeschlossenen End-
stücke von Γ isomorph ist. Eine ähnliche Arbeit wurde in [KMP17] für Differenzkörper
durchgeführt. In [KMP17] wird ein Begriff von Kompatibilität zwischen einer Bewer-
tung und dem Automorphismus σ eines Differenzkörpers (K,σ) eingeführt. Der σ-Rang
(beziehungsweise, der σ-Hauptrang) eines bewerteten Differenzkörpers (K, v, σ) wird dann
als der Ordnungstyp der Menge aller σ-kompatiblen Vergröberungen (beziehungsweise,
aller σ-Hauptvergröberungen) von v definiert. Die Abbildung σ induziert die Abbildung
σG auf G, und diese induziert die Abbildung σΓ auf Γ. Es wird in [KMP17] gezeigt, dass
der σ-Rang von (K, v, σ) auch zur Menge aller σG-abgeschlossenen konvexen Untergrup-
pen von G und zur Menge aller σΓ-abgeschlossenen Endstücke von Γ isomorph ist. Die
Autoren von [KMP17] geben auch eine Charakterisierung des σ-Rangs bezüglich einer
bestimmten von σ induzierten Äquivalenzrelation (siehe [KMP17, Theorem 5.3, Corollary
5.4, Corollary 5.5]).

Das Ziel des Kapitels 5 ist, durch Analogie mit den oben genannten Beispielen
von Rängen einen Begriff von differentiellem Rang für differentiell bewertete Körper
zu entwickeln. Dafür habe ich zunächst einen allgemeinen Begriff von φ-Rang und
φ-Hauptrang entwickelt, wobei φ ein beliebiger Operator auf einem bewerteten Körper
ist. Dieser Begriff von φ-Rang verallgemeinert die früheren oben genannten Begriffe
von Rängen. Mit diesem Begriff konnte ich leicht zeigen, dass der φ-Rang auf den
drei üblichen Stufen charakterisiert werden kann (Proposition 5.1.8). Im Abschnitt 5.3
wird die Theorie des φ-Rangs auf den Spezialfall von differentiell bewerteten Körpern
angewandt. Ich definiere da den differentiellen Rang (beziehungsweise, den differentiellen
Hauptrang) eines differentiell bewerteten Körpers als seinen φ-Rang (beziehungsweise,
als seinen φ-Hauptrang), wobei φ die logarithmische Ableitung ist (Definition 5.3.1).
Aus Proposition 5.1.8 folgt dann unmittelbar, dass der differentielle Rang auch auf
dem zum Körper assoziierten asymptotischen Paar charakterisiert werden kann. Diese
Tatsache erlaubt mir später, die Eigenschaften des differentiellen Rangs durch Arbeit auf
dem asymptotischen Paar zu untersuchen, anstatt auf dem Körper direkt zu arbeiten.
Ich gebe dann eine Charakterisierung des differentiellen Rangs mithilfe einer von der
logarithmischen Ableitung induzierten Quasiordnung (Satz 5.3.5), was ein Analoges zu
[KMP17, Theorem 5.3, Corollary 5.4, Corollary 5.5] ist. Für diesen Satz muss man sich
aber auf “H-type” Körper beschränken.

Im Fall der exponentiellen Körper (beziehungsweise, der Differenzkörper) kann man
den Rang dadurch charakterisieren, dass eine Bewertung w genau dann im exponentiellen
Rang (beziehungsweise, im σ-Rang) enthalten ist, wenn exp (beziehungsweise σ) eine
Exponentialfunktion (beziehungsweise ein Automorphismus) auf dem Restklassenkörper
Kw induziert. Es stellt sich also die Frage, ob eine ähnliche Aussage auch im Fall der
differentiell bewerteten Körper gilt. Die Proposition 5.3.6 gibt eine negative Antwort auf
diese Frage. Ich habe jedoch eine völlige Charakterisierung der Bewertungen, die zum
differentiellen Rang gehören, im Satz 5.3.11 gegeben.

Es schien mir aber, dass der von mir eingeführte Begriff von differentiellem Rang
nicht befriedigend war, weil er keine Information über den Elementen des Körpers, deren
Bewertungen nahe dem 0 liegen, gibt. Im Fall der Hardy-Körper zum Beispiel gibt der
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differentielle Rang keine Information über den Funktionen, die langsamer als alle Hintere-
inanderführungen von Logarithmen nach +∞ wachsen. Ich habe dieses Problem durch
das Einführen eines neuen Begriffs von Rang gelöst, den ich “entfalteten differentiellen
Rang” genannt habe (siehe Definition 5.3.14). Der entfaltete differentielle Rang wird auf
dem zu einem differentiell bewerteten Körper assoziierten asymptotischen Paar (G,ψ)
definiert. Die Idee ist, eine Familie von Translationen von ψ zu betrachten, die ψ um 0
“entfaltet”. Ich definiere dann den entfalteten differentiellen Rang (beziehungsweise, den
entfalteten differentiellen Hauptrang) als die Vereinigung aller ψa-Ränge (beziehungsweise,
aller ψa-Hauptränge) für alle diese Translationen ψa von ψ. Dieses Verfahren ermöglicht
uns, Information über das Verhalten von ψ nahe dem 0 zu bekommen, ohne die im differ-
entiellen Rang enthaltene Information zu verlieren. Ich zeige in der Proposition 5.3.17,
dass der entfaltete differentielle Rang immer entweder gleich dem differentiellen Rang
oder gleich einem Endstück des differentiellen Rangs ist. Ich lege dann eine Verbindung
zwischen dem entfalteten differentiellen Rang und dem exponentiellen Rang im Satz
5.3.22 offen: wenn ein differentiell bewerteter Körper auch mit einer Exponentialfunktion
versehen ist, dann stimmen sein exponentieller Rang und sein entfalteter differentieller
Rang überein.

Der letzte Teil des Kapitels 5 handelt von Ableitungen auf Körpern formaler Poten-
zreihen. In der klassischen Theorie der bewerteten Körper weiß man, dass jede total
geordnete Menge als der Hauptrang eines Körpers formaler Potenzreihen auftaucht. Eine
analoge Aussage gilt auch für Differenzkörper (siehe [KMP17]). Es stellt sich also die
Frage, ob ein Analoges auch für differentiell bewertete Körper gilt. Die Schwierigkeit
liegt daran, dass es nicht klar ist, wie man eine Ableitung auf einem beliebigen Körper
formaler Potenzreihen definieren kann. Die Autoren von [KM12] und [KM11] haben
dieses Problem angegangen. Ich habe manche ihrer Ideen benutzt, um die folgende
Frage zu beantworten: gegeben seien ein asymptotisches Paar (G,ψ) und ein Körper k
der Charakteristik 0; kann man dann eine Ableitung D auf dem Körper der formalen
Potenzreihen K := k((G)) definieren, sodass K ein differentiell bewerteter Körper wird,
dessen assoziiertes asymptotisches Paar (G,ψ) ist? Ich beantworte diese Frage im Satz
5.4.12, indem ich nötige und ausreichende Bedingungen auf (G,ψ) für die Existenz von
D gebe. Auf dem Weg zum Beweis dieses Satzes gebe ich eine explizite Konstruktion von
D (Formel (‡) im Abschnitt 5.4.1). Ich benutze dann den Satz 5.4.12, um zu zeigen, dass
jedes Paar von total geordneten Mengen, wobei die erste ein Hauptendstück des zweiten
ist, als das Paar (“differentieller Hauptrang”, “entfalteter differentieller Hauptrang”)
eines Körpers formaler Potenzreihen realisiert werden kann (Satz 5.4.28).
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Résumé

Cette thèse a pour objet les ordres, les valuations et les C-relations sur les groupes, ainsi
que les corps différentiels valués tels qu’étudiés par Rosenlicht. Trois objectifs principaux
y sont accomplis. Le premier de ces objectifs est d’introduire et d’étudier une notion de
quasi-ordre sur les groupes, qui a pour but de regrouper l’étude des valuations et des
ordres dans un cadre commun. Le deuxième est de décrire la structure des C-groupes
à l’aide de quasi-ordres, et de caractériser parmi eux ceux qui sont C-minimaux. Le
troisième est l’introduction et l’étude d’une notion de rang différentiel pour les corps
différentiels valués.

Bien que les ordres et les valuations soient classiquement traités comme deux sujets
différents, il existe cependant de remarquables similarités entre ces deux objets. C’est
pour cette raison que plusieurs tentatives ont été faites d’établir une théorie qui unifierait
les ordres et les valuations. Dans [Fak87], Fakhruddin proposa de résoudre ce problème
à l’aide des quasi-ordres, c’est-à-dire des relations binaires qui sont réflexives, transitives
et totales. Pus précisément, dans [Fak87], il a introduit la notion de corps quasi-ordonné,
où le quasi-ordre vérifie des relations de compatibilité avec les opérations du corps. Les
corps ordonnés et les corps valués sont deux exemples d’une telle structure (en effet,
toute valuation induit naturellement un quasi-ordre). Plus remarquablement, il a aussi
montré ce qu’on appelle la dichotomie de Fakhruddin, c’est-à-dire que, dans tout corps
quasi-ordonné, le quasi-ordre est soit un ordre, soit une valuation. Il est alors naturel de
se demander si un résultat analogue existe pour les groupes. Cette question est d’autant
plus motivée par le fait que les groupes valués et les groupes ordonnés jouent un rôle
important dans la théorie des corps valués munis d’un opérateur. Par exemple, si (G,ψ)
est le couple asymptotique associé à un corps différentiel valué, alors G est ordonné,
et de plus ψ est une valuation sur G. L’intérêt de développer une théorie des groupes
quasi-ordonnés est de pouvoir établir des résultats intéressants concernant les groupes
ordonnés et les groupes valués, et d’explorer les possibles interactions entre ordres et
valuations.

La question de savoir si la dichotomie de Fakhruddin admet un analogue pour les
groupes a été le point de départ du chapitre 3 de ma thèse. J’y introduis la notion de
quasi-ordre compatible défini sur un groupe abélien (où “compatible” signifie “compatible
avec l’opération du groupe”, voir Définition 3.1.1). Cette notion est l’exacte analogue
des quasi-ordres considérés par Fakhruddin sur les corps dans [Fak87]. J’ai rapidement
établi que la dichotomie de Fakhruddin était fausse dans le cas des groupes: il existe des
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quasi-ordres compatibles qui ne sont ni des ordres, ni des valuations (voir Exemples 3.1.2).
Le résultat principal du chapitre 3 (Théorème 3.1.26) est un théorème de structure pour
les groupes abéliens munis d’un quasi-ordre compatible. Il établit que tout quasi-ordre
compatible est un “mélange” d’ordre et de valuation. Plus précisément, un groupe abélien
muni d’un quasi-ordre compatible est une extension d’un groupe valué par un groupe
ordonné. De plus, la partie ordonnée est un segment initial du groupe.

Une fois ce théorème de structure des quasi-ordres compatibles établi, il est alors
naturel de vouloir étendre des résultats connus de la théorie des structures ordonnées au
cas des groupes quasi-ordonnés. Dans la section 3.2, j’introduis la notion de valuation
compatible avec un quasi-ordre. Cette notion est l’analogue de la notion bien connue de
valuation convexe pour un corps ordonné (voir par exemple [EP05, chapitre 2]). J’y donne
notamment une caractérisation de le compatibilité entre une valuation et un quasi-ordre,
qui est analogue à celle donnée pour les valuations convexe sur un corps quasi-ordonné
dans [KMP17, Théorème 2.2]. J’établis en revanche qu’il n’existe pas de “théorème de
Baer-Krull” pour les groupes abéliens munis d’un quasi-ordre compatible (voir Exemple
3.2.5). Dans la section 3.3, j’introduis une notion de produit pour les groupes quasi-
ordonnés (Définition 3.3.1), ainsi qu’une notion d’archimédianité. Cela me permet
de prouver un “théorème de plongement de Hahn” pour les quasi-ordres compatibles
(Théorème 3.3.8), qui généralise le théorème de plongement de Hahn classique.

Enfin, dans la dernière partie du chapitre 3, j’introduis une notion de q.o.-minimalité
pour les groupes quasi-ordonnés, qui est une généralisation de l’o-minimalité, où l’ordre
est remplacé par un quasi-ordre compatible. L’objectif était de définir une notion de
minimalité pour les groupes quasi-ordonnés qui généralise l’o-minimalité, mais qui donne
également une classe de groupes intéressante pour le cas des groupes valués. Pour cela,
j’ai utilisé la notion de “swiss cheese” introduite par Holly dans [Hol95]. Je définis une
notion de “swiss cheese” pour les groupes quasi-ordonnés par analogie aux “swiss cheese”
de Holly, puis je définis un groupe q.o.-minimal comme un groupe quasi-ordonné dont
tout sous-ensemble définissable est une union finie de ces “swiss cheese”, et tel que cette
propriété est préservée par équivalence élémentaire. Je montre alors que tout quasi-ordre
compatible induit une C-relation, et que la notion de q.o.-minimalité que j’ai définie est
alors équivalente à la C-minimalité (voir Propositions 3.4.1 et 3.4.4). Ceci ouvre la voie
au chapitre 4, qui a pour objet les C-groupes.

Une C-relation est une relation ternaire interprétable dans l’ensemble des branches
d’un arbre dans lequel toute pair admet un infimum. Plus précisément, si T est un
tel arbre, on définit une C-relation C sur l’ensemble des branches de T en disant que
C(x, y, z) est vrai si et seulement si l’intersection de y avec z est strictement supérieure
à l’intersection de x avec z. Réciproquement, on peut montrer que tout ensemble muni
d’une C-relation est interprétable dans l’ensemble des branches d’un arbre muni de la
C-relation décrite ci-dessus. Dans [MS96], les auteurs ont introduit la notion de C-groupe
et de C-minimalité. Un C-groupe est un groupe muni d’une C-relation compatible avec
l’opération du groupe. La C-minimalité est un analogue de l’o-minimalité, dans lequel
l’ordre est remplacé par une C-relation. Le but du chapitre 4 est de décrire les C-groupes
et de caractériser parmi eux les groupes C-minimaux.
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A la fin du chapitre 3, j’ai remarqué que les groupes munis d’un quasi-ordre compatible
sont naturellement des C-groupes. J’ai rapidement établi que la réciproque était fausse:
il existe des C-groupes dont la C-relation ne provient pas d’un quasi-ordre compatible.
Cependant, j’ai également remarqué qu’on pouvait tout de même étudier les C-groupes
à l’aide de certains quasi-ordres, que j’appelle des C-quasi-ordres. Plus précisément, si
(G, ., 1, C) est un C-groupe, alors C induit naturellement un quasi-ordre sur G défini
ainsi: on dit que x - y si et seulement si ¬C(x, y, 1). Un C-quasi-ordre est un quasi-ordre
ainsi induit par une C-relation. Le fait remarquable est qu’un C-quasi-ordre détermine
entièrement la C-relation qui l’induit. Il y a donc une correspondance bijective entre les
C-quasi-ordres et les C-relations compatibles, ce qui signifie que l’étude des C-groupes se
ramène à l’étude des C-quasi-ordres. Les C-quasi-ordres constituent l’objet central du
chapitre 4; toute l’étude des C-groupe est poursuivie non pas en travaillant directement
avec des C-relations, mais en utilisant les C-quasi-ordres. Il est à noter qu’un C-quasi-
ordre n’est en général pas un quasi-ordre compatible, bien qu’il existe un lien entre les
deux.

Le résultat le plus important du chapitre 4 est le théorème 4.3.33, qui est un théorème
de structure pour les groupes munis d’un C-quasi-ordre. On sait que les groupes ordonnés
et les groupes valués sont des exemples de C-groupes, dans le sens où un ordre ou une
valuation induit naturellement une C-relation. Le théorème 4.3.33 énonce que les groupes
ordonnés et le groupes valués sont les “blocs élémentaires” de la classe des C-groupes,
c’est-à-dire que tout C-groupe peut se construire à partir de groupes ordonnés et de
groupes valués. Dit autrement, les C-groupes sont un “mélange” de groupes ordonnés et
de groupes valués. Ceci établit une analogie avec les quasi-ordres compatibles, qui sont
également des “mélanges” d’ordre et de valuation. Il faut cependant noter une différence
importante: dans le cas des quasi-ordres compatibles, le “mélange” est particulièrement
simple car la partie ordonnée est un segment initial du groupe. Dans le cas des C-groupes,
ce “mélange” peut être beaucoup plus arbitraire (voir exemple 4.3.1(d)).

Dans la section 4.1, je donne une axiomatisation des C-quasi-ordres (Proposition
4.1.7). J’explique ensuite le lien entre les C-quasi-ordres et les quasi-ordres compatibles
étudiés au chapitre précédent. Enfin, je décris les C-quasi-ordres “de type ordre”, c’est-
à-dire les C-quasi-ordres induits par une C-relation qui est elle-même induite par un
ordre. Dans la section 4.2, je montre que tout C-quasi-ordre induit naturellement un
C-quasi-ordre sur le quotient du groupe par un sous-groupe convexe. Cela me permet de
démontrer un “théorème de Baer-Krull” pour les C-quasi-ordres (Théorème 4.2.11), que
je mets ensuite en relation avec le théorème de Baer-Krull classique pour les valuations
convexes. La section 4.3 est entièrement dédiée à la preuve du théorème de structure
des C-groupes (le théorème 4.3.33). La section 4.4 est dédiée à l’étude des groupes
C-minimaux. On sait grâce au théorème 4.3.33 que tout C-groupe peut se décomposer en
parties ordonnées et en parties valuées (les “composantes fondamentales”, voir Remarque
4.3.35). On peut alors se demander s’il est possible de caractériser la C-minimalité du
groupe en fonction des propriétés modèle-théorique de ces “composantes fondamentales”.
C’est l’objet de la section 4.4. Je commence par réinterpréter les théorème de [MS96]
sur les C-groupes dans le langage des C-quasi-ordres. Les résultats de [MS96] disent
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essentiellement que, dans un groupe C-minimal, les parties valuées ne peuvent pas
alterner indéfiniment avec les parties ordonnées (voir Théorème 4.4.7). J’établis ensuite
que le produit valuationel, qui est une notion de produit que je définis pour les C-quasi-
ordres, préserve les équivalences élémentaires (Théorème 4.4.13). Mon résultat principal
concernant les groupes C-minimaux est le théorème 4.4.37. Il énonce que tout C-groupe
abélien C-minimal est un produit fini de groupes o-minimaux et de groupes C-minimaux
valués. Je termine le chapitre 4 en donnant un exemple de C-groupe C-minimal qui n’est
ni un groupe ordonné, ni un groupe valué (Exemple 4.4.43).

Le dernier chapitre de cette thèse a pour but objet les corps différentiels valués et la
notion de rang différentiel définie pour ces corps. J’entends par “corps différentiel valué”
un corps différentiel muni d’une valuation différentielle telle que définie par Rosenlicht
dans [Ros80].

Le rang (respectivement, le rang principal) d’un corps valué (K, v) est un invariant
important de (K, v). Il est défini comme le type d’ordre de l’ensemble des sous-anneaux
(respectivement, des sous-anneaux principaux) de K qui contiennent l’anneau de valuation
Ov. Il possède plusieurs caractérisations. On peut en effet le caractériser au niveau du
corps lui-même, mais également au niveau du groupes des valeurs G (comme l’ensemble
des sous-groupes convexes de G) ainsi qu’au niveau de la chaîne des valeurs Γ de G (comme
l’ensemble des segments finaux de Γ). Récemment, plusieurs notions de rang définies pour
des corps valués munis d’un opérateur ont vu le jour. On peut citer le rang exponentiel
d’un corps exponentiel (voir [Kuh00]) et le σ-rang d’un corps muni d’un automorphisme
σ (voir [KMP17]). L’idée essentielle est d’avoir une notion de rang qui rend compte
du comportement de l’opérateur. Dans [Kuh00], S. Kuhlmann définit une notion de
compatibilité entre l’exponentielle d’un corps exponentiel (K,≤, exp) et un anneau de
valuation sur K. Elle définit alors le rang exponentiel d’un corps exponentiel (K,≤, exp)
comme le type d’ordre de l’ensemble des anneaux compatibles avec l’exponentielle qui
contiennent l’anneau de valuation Ov, où v est la valuation archimédienne sur K. Elle
montre ensuite que, dans les corps exponentiels qu’elle considère, le logarithme induit
naturellement une application χ sur le groupe des valeurs G de (K, v), et que χ induit une
application ζ sur la chaîne des valeurs Γ de G. Enfin, elle montre que le rang exponentiel
est isomorphe à l’ensemble des sous-groupes convexes de G qui sont clos par χ, ainsi
qu’à l’ensemble des segments finaux de Γ qui sont clos par ζ. Dans [KMP17], les auteurs
présentent des travaux similaires pour le cas des corps munis d’un automorphisme. Ils
définissent une notion de compatibilité entre l’automorphisme σ d’un corps et un anneau
de valuation. Ils définissent ensuite le σ-rang d’un corps valué aux différences (K, v, σ)
comme le type d’ordre de l’ensemble des anneaux contenant Ov qui sont compatibles
avec σ. Ils montrent ensuite que ce rang est isomorphe à l’ensemble des sous-groupes
convexes de G qui sont σG-clos, où σG est l’application induite par σ sur G, ainsi qu’à
l’ensemble des segments finaux de Γ qui sont σΓ-clos, où σΓ est l’application induite par
σG sur Γ. Ils donnent également une caractérisation du σ-rang via certaines relations
d’équivalence induites par σ (voir [KMP17, Theorem 5.3, Corollary 5.4, Corollary 5.5]).

Prenant inspiration des travaux de [Kuh00] et [KMP17], le but du chapitre 5 est
de définir et d’étudier une notion de rang différentiel pour les corps différentiels valués.
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Pour cela, j’ai commencé par introduire une notion générale de “φ-rang” et de “φ-rang
principal” d’un corps valué muni d’un opérateur φ qui généralise les notions de rang
exponentiel et de σ-rang. Avec quelques hypothèses raisonnables sur φ, j’ai pu facilement
montrer que, comme dans le cas classique, le φ-rang peut se caractériser à trois niveaux
différents: au niveau du corps, au niveau du groupe des valeurs et au niveau de la
chaîne des valeurs (voir Proposition 5.1.8). J’ai ensuite appliqué cette notion de φ-rang
au cas des corps différentiels valués: j’ai défini le rang différentiel (respectivement, le
rang différentiel principal) de (K, v,D) comme le φ-rang (respectivement, le φ-rang
principal) de (K, v), où φ est la dérivée logarithmique. En appliquant la Proposition
5.1.8, j’obtiens directement que le rang différentiel peut être caractérisé à trois niveaux
différents (Théorème 5.3.3), comme pour le rang classique. En particulier, le rang
différentiel est isomorphe à l’ensemble des sous-groupes convexes de G qui sont clos par ψ
(ce que j’appelle également le ψ-rang de G), où ψ est l’application induite par la dérivée
logarithmique sur G. Ceci me permet ensuite d’étudier le rang différentiel en étudiant
le couple asymptotique (G,ψ) plutôt qu’en travaillant directement sur le corps K. Je
donne ensuite une caractérisation du rang différentiel en fonction d’un certain quasi-ordre
induit par la dérivée logarithmique (Théorème 5.3.5). Ce résultat est l’analogue des
résultat dans [Kuh00] et [KMP17] qui expriment le rang exponentiel (respectivement, le
σ-rang) via une relation d’équivalence induite par exp (respectivement, par σ). Il faut
cependant noter que, dans le cas des corps différentiels, cette caractérisation n’est valable
que lorsque le couple asymptotique est de type H (voir section 2.4).

Dans le cas exponentiel (respectivement, dans le cas d’un automorphisme), le rang
peut être caractérisé par le fait qu’un anneau de valuation Ow appartient au rang
exponentiel (respectivement, au σ-rang) si et seulement si exp (respectivement, σ) induit
naturellement une exponentielle (respectivement, un automorphisme) sur le corps résiduel
Kw. On peut alors se demander si un résultat analogue est vrai dans le cas différentiel.
J’ai répondu à cette question par la négative dans la Proposition 5.3.6. En effet, pour
que Ow appartienne au rang différentiel, la condition que D induise une dérivation sur
Kw n’est pas suffisante. Je donne cependant une caractérisation complète des anneaux
qui appartiennent au rang différentiel dans le théorème 5.3.11.

Il m’ est apparu que la notion de rang différentiel ainsi définie n’était pas entièrement
satisfaisante, car elle ne rend pas compte du comportement de la dérivée logarithmique
sur les éléments du corps qui ont une valuation proche de 0. Dans le cas des corps de
Hardy par exemple, cela se traduit par le fait que le rang différentiel ne voit pas les
fonctions qui croissent lentement vers +∞ telles que les translogarithmes. J’ai résolu ce
problème en introduisant une autre notion de rang, appelée rang différentiel déployé, qui
étend le rang différentiel. Le rang différentiel déployé est défini sur le couple asymptotique
(G,ψ) d’un corps différentiel valué. L’idée est de considérer une famille de translatées de
ψ qui permet de “dérouler” ψ autour de 0. Je définis alors le rang différentiel déployé
(respectivement, le rang différentiel déployé principal) comme l’union de tous les ψa-rang
(respectivement, de tous les ψa-rangs principaux) de G pour toutes ces translatées ψa de
ψ (voir Définition 5.3.14). En procédant ainsi, on obtient les informations qu’on souhaite
concernant les éléments du groupe proches de 0, tout en conservant l’information contenue
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dans le rang différentiel. Plus précisément, je montre que le rang différentiel est soit égal
au rang différentiel déployé, soit égal à un segment final principal du rang différentiel
déployé (Proposition 5.3.17). Je donne ensuite une caractérisation des valuations qui
appartiennent au rang différentiel déployé (Proposition 5.3.19). Enfin, je mets en lien
le rang différentiel déployé et le rang exponentiel: le corollaire 5.3.22 énonce que, si on
considère un corps différentiel valué qui est également un corps exponentiel, alors le rang
exponentiel est égal au rang différentiel déployé.

Dans la théorie classique des corps valués, on sait que tout ordre linéaire peut être
réalisé comme le rang principal d’un certain corps valué. Des résultats analogues existent
pour le rang exponentiel et le σ-rang. Dans le cas des corps pures comme dans le cas des
corps avec automorphisme, on peut même réaliser cet ordre linéaire comme le rang d’un
certain corps de séries généralisées. On peut alors se demander si un résultat analogue
existe dans le cas différentiel. La dernière partie du chapitre 5 est dédiée à ce problème.
Dans le cas des corps de séries “classiques” avec exposants dans Z, il existe une manière
naturelle de définir une dérivation. En revanche, la situation devient plus compliquée
lorsqu’on considère des corps de séries dont les exposants sont dans un groupe ordonné
arbitraire. Dans [KM12] et [KM11], les auteurs ont travaillé sur cette question. J’ai
utilisé certaines de leurs idées pour répondre à la question suivante: Étant donné un
couple asymptotique (G,ψ) et un corps k de caractéristique 0, peut-on définir sur le
corps de séries généralisées k((G)) une dérivation qui en fait un corps différentiel valué
dont le couple asymptotique est (G,ψ)? La réponse est donné par le théorème 5.4.12,
qui donne une condition nécessaire et suffisante sur les “composantes” Cλ de la valuation
ψ pour qu’une telle dérivation existe. En prouvant ce théorème, je donne même une
construction explicite de cette dérivation (formule (‡) de la Section 5.4.1). Enfin, j’utilise
ce résultat pour montrer que toute paire d’ensembles totalement ordonnés dont l’un est
segment final principal de l’autre peut être réalisée comme la pair (“rang différentiel
principal”, “rang différentiel déployé principal ”) d’un corps de séries généralisées muni
d’une dérivation (Théorème 5.4.28).
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Chapter 1

Introduction

This thesis deals with orders, valuations and C-relations on groups, and with differential-
valued fields à la Rosenlicht. It achieves three main objectives. First, it introduces and
studies a notion of quasi-order on groups meant to encompass orders and valuations in a
common framework. Secondly, it describes C-groups via quasi-orders and characterizes
the C-minimal groups amongst them. Finally, it introduces and studies a notion of
differential rank for differential-valued fields. I will now recall the background and
motivation and present my results on each of these topics.

Quasi-orders as a uniform approach to valuations and orders

Background

Although ordered and valued structures are classically treated as different subjects, they
still bear significant similarities. For this reason, several attempts have been made to
establish a unifying theory of orders and valuations. In [Fak87], Fakhruddin proposed
to approach this problem with quasi-orders, i.e. binary relations which are reflexive,
transitive and total. In [Fak87], Fakhruddin defined a quasi-ordered field as a field
with a quasi-order compatible with the field operations (see Definition 2.7.6 below). It
is easy to see that ordered fields and valued fields are two examples of quasi-ordered
fields. Fakhruddin then showed a converse, stating that any quasi-ordered field is either
an ordered field or a valued field (See Theorem 2.7.8 below); this result is known as
Fakhruddin’s dichotomy. Fakhruddin’s results show that the theory of quasi-ordered
fields is a good way of unifying the theory of both valued and ordered fields. It is then a
natural question to ask if Fakhruddin’s results can be transposed to the case of groups.
The work done in [KMP17] gives an example of a result on quasi-ordered fields yielding
interesting results for both ordered and valued fields. In [KMP17], Kuhlmann, Matusinski
and Point defined the notion of compatibility between a valuation and a quasi-order on
a field, and gave several characterizations of it (see Theorem 2.7.9 below). Applied to
the case where the quasi-order is an order, this theorem gives conditions for a valuation
to be convex; applied to the case where the quasi-order comes from a valuation v, this
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theorem gives conditions for a valuation to be a coarsening of v.
This prompts us to try to develop an analogous theory for groups, in order to unify

the theory of both ordered and valued groups in a common framework. In particular,
the following questions naturally arise: Is there an analog of Fakhruddin’s dichotomy for
groups? If not, what is the structure of the group analog of Fakhruddin’s quasi-ordered
fields? Is there a group analog of Kuhlmann, Matusinski and Point’s characterization of
compatibility between a valuation and a quasi-order? Another natural idea that arises
when developing a theory of quasi-ordered groups is to generalize well-known results
about ordered structures to the case of quasi-ordered structures. One example that
comes to mind is Hahn’s embedding theorem (Theorem 2.2.6 below). Another example is
the Baer-Krull theorem (Theorem 2.3.1 below). The Baer-Krull theorem is a statement
about ordered fields and had until now no group analog. Establishing a group version of
the Baer-Krull theorem with quasi-orders instead of orders has the advantage of being
useful both for the study of ordered groups and for the study of valued groups. Finally, it
would be interesting to develop a notion of model-theoretic minimality for quasi-ordered
groups which generalizes o-minimality.

My results

I introduced the notion of compatible quasi-ordered abelian groups (q.o.a.g.), which
is the group analog of Fakhruddin’s quasi-ordered fields. I quickly established that
Fakhruddin’s dichotomy fails in the case of groups (see Examples 3.1.2). I then described
the structure of an arbitrary compatible quasi-ordered abelian group. I basically showed
that a compatible q.o.a.g. is a “mix” of ordered and valued groups, in the sense that a
compatible q.o.a.g. is an extension of a valued group by a totally ordered group (see
Theorem 3.1.29). The key idea to obtain this result is to divide the elements of the
group into two categories, respectively called o-type and v-type elements. By definition,
v-type elements are equivalent to their inverse (for the equivalence relation induced by
the quasi-order), whereas o-type elements are not. Remarkably, this simple property is
sufficient to determine the behavior of the quasi-order around an element. More precisely,
I showed that the set of o-type elements is actually an ordered abelian subgroup and
that the quasi-order behaves like a valuation on the set of v-type elements.

I established a group analog of Kuhlmann, Matusinski and Point’s characterization of
compatibility between a quasi-order and a valuation (see Proposition 3.2.2). However, I
quickly established that there was no equivalent of the Baer-Krull theorem for compatible
quasi-ordered groups (see Example 3.2.5 and its preceding paragraph). I defined a notion
of product for the category of compatible q.o.a.g.’s, and I showed that the product
of an ordered group by a valued group preserves elementary equivalence (Theorem
3.3.13). I also defined a notion of archimedeanity for compatible quasi-orders which
generalizes the classical notion of archimedeanity for orders. These notion of product
and of archimedeanity then allowed me to give a generalization of Hahn’s embedding
theorem for quasi-ordered groups (see Theorem 3.3.8).

I then tackled the problem of defining a notion of minimality for compatible quasi-
ordered groups in analog of o-minimality. The idea was to find a notion which generalizes
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o-minimality but also gives an interesting class of structures when applied to valued
groups. The difficulty in this task is to find the right definition for the “basic” definable
sets, i.e. the class of sets which should play the role that intervals play in the case of
o-minimality. My approach was to choose the “basic” definable sets as the “swiss cheeses”
introduced by Holly in [Hol95]. It turned out that the notion of minimality that we obtain
this way is actually equivalent to C-minimality for a C-relation induced by the quasi-order.
In particular, I showed that any compatible q.o.a.g. naturally induces a compatible
C-relation (see Proposition 3.4.1), so we can view compatible quasi-ordered abelian
groups as C-groups. However, it quickly turned out that some compatible C-relations are
not induced by a compatible quasi-order. This prompted me to study C-groups further
with the help of another class of quasi-orders, which I call C-quasi-orders.

It is worth noting that the techniques used to obtain these results on quasi-ordered
groups generalize well-known methods used for ordered groups. In particular, the notion
of convexity plays an important role, as well as the notion of quasi-order induced on a
quotient.

Quasi-orders as a tool to study C-groups

Background

A C-relation is a ternary relation which is interpretable in the set of branches of a tree.
C-minimality was introduced in [MS96] as an analog of o-minimality where the order is
replaced with a C-relation. In [MS96], Macpherson and Steinhorn also introduced the
notion of C-group, which consists in a group endowed with a C-relation compatible with
the group operation. Later, Delon generalized the definition of C-relation in [Del11] to
include totally ordered structures. The C-relations studied by Macpherson and Steinhorn
are now called dense C-relations. In Delon’s context, o-minimality and strong minimality
both become special cases of C-minimality. Totally ordered and valued groups are both
examples of C-groups (in the sense that both total orders and valuations naturally
induce a C-relation). Macpherson and Steinhorn obtained a partial classification of dense
C-minimal groups in [MS96], and Delon and Simonetta completely classified abelian
valued C-minimal groups in [DS17]. However, there is still no complete classification of
C-minimal groups. Moreover, until now, there was no description of C-groups in general
(i.e. without the minimality assumption).

My results

Discovering the connection between compatible quasi-orders and C-groups gave me the
intuition that quasi-orders could be very useful in the study of C-groups, and thus
prompted me to push forward the study of C-groups with the help of another notion of
quasi-orders. My idea came from the following remark: if (M,C) is any C-structure, then
fixing one variable of the C-relation gives us a quasi-order on M . More precisely, for any
a ∈M , the binary relation ¬C(., ., a) is a quasi-order. In the case of groups, the natural
candidate for a is the neutral element 1. A C-quasi-order on a group is then a quasi-order
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of the form ¬C(., ., 1), where C is a compatible C-relation. Remarkably, a compatible
C-relation is completely determined by the C-quasi-order it induces. This means that
we can study compatible C-relations by just looking at C-quasi-orders. This makes the
study of C-groups easier since quasi-orders are binary relations, whereas C-relations are
ternary. Moreover, the fact that quasi-orders are similar to orders makes working with
C-quasi-orders more intuitive than working with C-relations. When using quasi-orders,
one can use techniques similar to those used for ordered structures. For example, the
notion of convexity plays an essential role in my work on C-quasi-orders, as well as the
idea that a C-quasi-order induces a C-quasi-order on a quotient by a convex subgroup
(see Proposition 4.2.2). This idea was inspired by previous work on ordered groups (see
for example [Fuc63]) which generalize well to C-quasi-orders.

My main result on C-groups is Theorem 4.3.33, which gives the structure of an
arbitrary C-group. It essentially states that totally ordered groups and valued groups are
the “building blocks” of C-groups. This result was obtained not by working directly with
C-relations but with C-quasi-orders. The ideas used were very similar to the one I used
for compatible quasi-orders. I separated the elements of the groups into two categories,
the o-type and the v-type elements. I showed that the C-q.o. is “valuational-like” around
v-type elements and “order-type-like” around o-type elements. This allowed me to
partition the group into a collection of strictly convex subsets, on each of which the C-q.o.
is either “order-type-like” or “valuational-like”.

I applied Theorem 4.3.33 to describe C-minimal groups. The main result concerning
C-minimal groups is Theorem 4.4.37, which states that any welding-free (see Definition
4.3.2) abelian C-minimal group is a finite direct product of o-minimal groups and C-
minimal valued groups. I also showed a “Feferman-Vaught” theorem for C-groups. More
precisely, I defined a notion of product for the category of C-q.o. groups called the
valuational product (see Definition 2.7.14) and showed that any such product with finitely
many factors preserves elementary equivalence (see Theorem 4.4.13).

Introducing C-quasi-orders also allowed me to state a group analog of the Baer-Krull
theorem (Theorem 4.2.11), which I had failed to do when considering compatible quasi-
orders. This is due to the fact that, unlike compatible quasi-ordered groups, the class
of C-quasi-ordered groups is stable under lifting. As corollaries of Theorem 4.2.11, I
obtained a Baer-Krull theorem for ordered groups (Corollary 4.2.13) and another one
for valued groups (Corollary 4.2.12). I then showed how we can recover the classical
Baer-Krull theorem from my Baer-Krull theorem on ordered groups (see Section 4.2.3).

The differential rank

Background

The rank (respectively, the principal rank) of a valued field (K, v) is an important
characteristic of the valued field. It is defined as the order type of the set of all coarsenings
of v (respectively, all principal coarsenings of v), ordered by inclusion of their valuation
rings. It has three equivalent characterizations: one at the level of the valued field (K, v)
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itself, another one at the level of the value group G := v(K×) (as the order type of the
set of all convex subgroups of (G,≤), ordered by inclusion) and a third one at the level
of the value chain Γ := vG(G,0) of the value group (as the order type of the set of final
segments of Γ, ordered by inclusion). Recently, notions of ranks have been developed for
valued fields endowed with an operator. Examples of this are the exponential rank of
an ordered exponential field (see [Kuh00]) and the difference rank of a valued difference
field (see [KMP17]). In [Kuh00], Kuhlmann defined a notion of compatibility between
the exponential and a valuation of the field, and defined the (principal) exponential
rank of the field as the set of (principal) convex valuations which are compatible with
the exponential. She then showed that the logarithm of the field naturally induces a
contraction map χ on the value group, and that the exponential rank is equal to the order
type of the set of convex subgroups of the value group (G,≤) which are closed under χ.
Similarly, the map χ induces a map ζ on the value chain Γ of G, and the exponential
rank of the field is also equal to the order type of the set of final segments of Γ which
are closed under ζ. This shows that, as happens with the classical rank, the exponential
rank is characterized at three levels. Kuhlmann also showed that any totally ordered set
can be realized as the principal exponential rank of some exponential ordered field. In
[KMP17], a very similar work was done for difference fields. The authors of [KMP17]
defined a notion of compatibility between a valuation and an automorphism σ of the
field, and defined the (principal) difference rank of a difference valued field as the set of
(principal) coarsenings of v compatible with σ. They then showed that the difference
rank can also be characterized at the level of the value group via a map σG induced by σ
on G and at the level of the value chain Γ via a map σΓ induced by σG on Γ. They also
showed that the difference rank can be characterized via a certain equivalence relation
induced by σ on K (see [KMP17, Theorem 5.3, Corollary 5.4, Corollary 5.5]). Finally,
they showed that any totally ordered set can be realized as the principal difference rank
of some difference field.

It is then natural to ask whether we can develop a similar theory for differential fields.
More precisely, we are interested in the class of differential-valued fields introduced by
Rosenlicht in [Ros80]. They are generalizations of Hardy fields. Differential-valued fields
play a central role in the work of Aschanbrenner, van den Dries and van der Hoeven on
the model theory of transseries (see [MAv17]).

A natural way of constructing a valued field of given principal rank is to consider
fields of power series. We know that this is also possible in the case of difference fields,
i.e. any totally ordered set is the difference rank of some field of power series (see the
proof of [KMP17, Corollary 4.13]). However, we also know that this is not possible in the
exponential case, because no field of power series can be endowed with an exponential
(see [Kuh00]). It is then natural to wonder if it is possible in the case of differential fields.
This requires solving the following problem:

Question 1: Given an arbitrary field of power series K, how can we endow K with a
derivation D which makes (K, v,D) a differential-valued field?

This problem was addressed in [KM12] and [KM11].
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My results

I defined a notion of φ-rank of a field (K, v) endowed with an arbitrary operator φ.
This notion generalizes the notions of exponential and difference rank. I showed that,
with some reasonable assumptions on φ, the φ-rank is characterized at three levels (see
Proposition 5.1.8). I then applied my definition of φ-rank to the special case of differential-
valued fields, where φ is set to be the logarithmic derivative. I then immediately got
the result that the differential rank is characterized at three levels (Theorem 5.3.3). I
then interpreted the differential rank via a certain quasi-order induced by φ (Theorem
5.3.5). This is an analog of [KMP17, Theorem 5.3, Corollary 5.4, Corollary 5.5]. I then
established that, unlike what happens in the difference and exponential case, one cannot
characterize the compatibility of a valuation with φ by looking at the map induced by φ
on the residue field. However, I get another characterization of compatibility (Theorem
5.3.11).

This notion of differential rank is a bit naive as it only consists in imitating the
definitions of rank for difference and exponential rank. It turned out that the differential
rank is not really a satisfying notion of rank, as it is too coarse. Indeed, the differential
rank does not say anything on the behavior of φ for elements of the field whose valuation
is close to zero. In the context of Hardy fields for example, any convex subring containing
the identity function is φ-compatible. This means that the φ-rank does not see the
behavior of φ on slowly growing functions, i.e functions that grow more slowly than
polynomials. This prompted me to define a new notion of rank, which I call the unfolded
differential rank. The unfolded differential rank is defined via the asymptotic couple
(G,ψ) of the field. The idea is to consider a family of translates of ψ which allows us
to “unfold” the map ψ on a neighborhood of 0. I then defined the unfolded differential
rank as the union of all the ψa-ranks of the group for all these translates ψa of ψ. I
then established a connection between the unfolded differential rank and the exponential
rank: If K happens to be an exponential field and a differential-valued field, then the
exponential rank of K coincides with the unfolded differential rank of K (see Corollary
5.3.22).

Finally, I showed that, for any pair (P,Q) of totally ordered sets such that P is either
Q or a principal final segment of Q, there exists a field of power series K and a derivation
D on K such that (K, v,D) is a differential-valued field, P is the principal differential
rank of K and Q is the principal unfolded differential rank of K (see Theorem 5.4.28).
In doing so, I answered a variant of Question 1 above:

Question 2: Given an asymptotic couple (G,ψ) and a field k, is there a strongly linear
derivation D on k((G)) making (K, v,D) a differential-valued field?

I answered question 2 by giving a necessary and sufficient condition on (G,ψ) for
the existence of D (see Theorem 5.4.12). It then allowed me to answer Question 1 in
the special case where we require D to be a strongly linear Hardy-type derivation (see
Theorem 5.4.22).
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I now briefly describe the structure of this thesis. Chapter 2 gives preliminaries on
orders, valuations, C-relations and quasi-orders. Except for Section 2.7, which introduces
quasi-orders, every definition and result in chapter 2 can be found in the literature.
Chapter 3 introduces and studies compatible quasi-ordered abelian groups. I start by
describing the structure of a compatible quasi-ordered abelian group in Section 3.1. I then
give a characterization of compatibility between a quasi-order and a valuation in Section
3.2. In Section 3.3, I introduce a notion of product of compatible q.o.a.g.’s and show a
quasi-order analog of Hahn’s embedding theorem. Finally, in Section 3.4, I introduce a
notion of quasi-order-minimality and show that it is equivalent to C-minimality.

Chapter 4 is dedicated to the study of C-groups via C-quasi-orders. I start by
introducing and axiomatizing C-quasi-orders in Section 4.1. In the same section, I also
describe the “order-type” C-q.o.’s (i.e., C-q.o.’s induced by a group order) and explain the
connection between C-q.o.’s and compatible q.o.’s. In Section 4.2, I establish a Baer-Krull
Theorem for C-q.o.’s. In Section 4.3, I describe the structure of an arbitrary C-q.o. group.
Finally, in Section 4.4, I apply the results of Section 4.3 to describe C-minimal groups.

Chapter 5 is dedicated to differential-valued fields. I develop the notion of φ-rank of
a valued field endowed with an operator φ in Section 5.1. In Section 5.3, I introduce the
notion of differential rank of a differential-valued field and give several characterizations
of it. I then introduce the notion of unfolded differential rank. Finally, in Section 5.4, I
describe how to define a derivation on a field of power series, and then use these results to
construct a differential-valued field of given principal differential rank and given principal
unfolded differential rank.
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Chapter 2

Preliminaries: orders, valuations,
C-groups and quasi-orders

2.1 Conventions
When working with arbitrary groups which are not necessarily abelian, we shall denote
the group operation multiplicatively. However, the group operation will be denoted
additively in most instances where the group is assumed to be abelian. For any group G
and g, z ∈ G, gz denotes zgz−1, and ord(g) denotes the order of g. If (G, 1, .) is a group
and A ⊆ G is a subset of G, then A.A denotes the set {a.b | a, b ∈ A} and A−1 denotes
{g−1 | g ∈ A}. If H is a normal subgroup of G, we will denote by πH the canonical
projection πH : G → G/H. If (Gi)i∈I is a family of groups, then ∏

i∈I Gi denotes the
direct product of this family. If g ∈ ∏

i∈I Gi, we will usually denote by gi the coefficient
of g at i ∈ I, and supp(g) will denote the support of g, i.e supp(g) = {i ∈ I | gi , 1}.
If G,H are two groups and α : G → Aut(H), then G nα H denotes the corresponding
semi-direct product. We will denote byN the set of natural numbers {1, 2, 3, . . . } without
zero. The set N∪{0} is denoted by N0. In Sections dealing with model theory (Sections
3.3.3, 3.4 and 4.4 ), the languages we consider always contain equality, which is denoted
by “=”. In contrast, equality between formulas will be denoted by “≡”.

2.2 Ordered and valued groups
We recall here some basic facts about the theory of ordered groups. Most of these results
can be found in [Fuc63] and [Gla99]. Let G be a group. A total order ≤ on G is called a
group order if it satisfies the following condition:

∀x, y, z ∈ G, x ≤ y ⇒ xz ≤ yz ∧ zx ≤ zy. (OG)

Throughout this thesis, an ordered group is a pair (G,≤) consisting of a group G with
a total group order ≤ on G. Note that the author of [Fuc63] considers orders which are
not necessarily total, but we want to insist on the fact that all ordered groups considered
in this thesis are totally ordered.
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It follows easily from axiom (OG) that any ordered group is torsion-free. If (G,≤) is an
ordered group, we denote by G+ the positive cone of (G,≤), i.e G+ := {g ∈ G | 1 ≤ g}.
Note that G+ entirely characterizes the order ≤, since g ≤ h is equivalent to hg−1 ∈ G+.
The following result can be found in [Fuc63]:

Theorem 2.2.1
A subset P of G is the positive cone of some total group order on G if and only if the
following holds:

(i) P ∩ P−1 = {1}

(ii) P.P ⊆ P

(iii) zPz−1 = P for any z ∈ G

(iv) P ∪ P−1 = G

The order is then unique and can be defined from P as follows: g ≤ h if and only if
hg−1 ∈ P .

Note that condition (iv) of Theorem 2.2.1 is not part of [Fuc63, Theorem 2, page 13],
because the author of [Fuc63] considers partial orders. However, we need condition (iv)
if we just want to consider total orders. If P is any subset of G satisfying conditions
(i)-(iv) of Theorem 2.2.1, we will say that P is a positive cone of G.

If G is a torsion-free abelian group, then we denote by Ĝ the divisible abelian group
G

⊗
ZQ. We call Ĝ the divisible hull of G, and we view G as a subgroup of Ĝ via the

embedding g 7→ g ⊗ 1. Note that Ĝ is the smallest divisible abelian group containing G,
in the sense that Ĝ is embeddable into any divisible abelian group containing G. Now
assume that (G,≤) is an ordered group with positive cone P . Then there is a unique
group order on Ĝ extending ≤. Indeed, if we set P̂ := {g ⊗ r | g ∈ P ∧ 0 ≤ r}, then one
can check that P̂ is the unique positive cone on Ĝ which extends P .

An important notion related to ordered groups is the notion of archimedeanity. Let us
fix an ordered group (G,≤). If g ∈ G, we denote by |g| the absolute value of g, i.e |g| = g
if 1 ≤ g and |g| = g−1 otherwise. We say that two elements g, h ∈ G are archimedean-
equivalent, and write g ∼arch h, if there are n,m ∈N such that |g| ≤ |h|n and |h| ≤ |g|m.
The relation ∼arch is an equivalence relation on G, and we denote by clarch(g) the class
of g for the relation ∼arch. An ordered group is called archimedean if it has exactly one
archimedean class apart from {1}. The set of archimedean classes of G is totally ordered
by clarch(g) ≤ clarch(h) ⇔ ∃n,m ∈ N, |gn| ≤ |hm|. We recall the Hölder theorem on
archimedean ordered groups:

Theorem 2.2.2 ([Fuc63, chapter IV, section 1, Theorem 1])
Let (G,≤) be an ordered group. Then (G,≤) is archimedean if and only if it is isomorphic
as an ordered group to a subgroup of (R,+,≤), where ≤ denotes the usual order of R.

If H is a convex normal subgroup of G, then ≤ naturally induces an order on the
quotient group G/H by g1H ≤ g2H ⇔ ∃h1, h2 ∈ H, g1h1 ≤ g2h2 (see [Fuc63, chapter
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II, section 4]). The category of ordered groups is naturally endowed with a notion of
product called the lexicographic product, whose definition we recall here. If (Bγ)γ∈Γ is a
family of groups indexed by a totally ordered set (Γ,≤), we define the Hahn product of
the family (Bγ)γ∈Γ, denoted H

γ∈Γ
Bγ , as the subgroup of ∏

γ Bγ consisting of all elements
of ∏

γ Bγ whose support is well-ordered. If each Bγ is endowed with a group order ≤γ ,
then we can define the lexicographic product of the family (Bγ ,≤γ)γ∈Γ as the ordered
group (G := H

γ∈Γ
Bγ ,≤), where ≤ is defined as follows: we say that g ≤ h if gγ ≤ hγ ,

where γ = min supp(gh−1) (see [Fuc63, chapter II, section 7]). We will sometimes denote
elements of H

γ∈Γ
Bγ as formal sums ∑

γ∈Γ gγ , with gγ ∈ Bγ for all γ ∈ Γ.
We now want to recall the basic facts of valuation theory. We insist on the fact that

the valued groups which we will consider are not necessarily abelian. This is unusual in
the literature, as most works on valued groups seem to focus on abelian groups. However,
several notions of valuations for arbitrary groups have been introduced, for example in
[PC83] and [Sim03]. We chose to use the definition given in [Sim03], as it is particularly
useful for the study of C-groups.

Definition 2.2.3
A valuation on a group G is a map v : G→ Γ ∪ {∞} such that:

(i) Γ ∪ {∞} is a totally ordered set with maximum ∞.

(ii) For any g ∈ G, v(g) =∞⇔ g = 1

(iii) For any g, h ∈ G, v(gh−1) ≥ min(v(g), v(h)).

(iv) For any g, h, z ∈ G, v(g) ≤ v(h)⇔ v(gz) ≤ v(hz)

Remark 2.2.4: In [PC83], Priess-Crampe only requires (i),(ii) and (iii) in the definition
of valuation. However, Simonetta in [Sim03] also requires (iv). We choose here the
definition of valuation given in [Sim03] because it is a more convenient definition when
working with C-groups as we do in chapter 4. In particular, a map v satisfying (i),(ii)
and (iii) but not (iv) would not induce a compatible C-relation on G.

Notation
If v : G→ Γ ∪ {∞} is a valuation, then for any γ ∈ Γ, Gγ and Gγ respectively denote
{g ∈ G | v(g) ≥ γ} and {g ∈ G | v(g) > γ}. We also set G∞ := G∞ := {1}.

Remark 2.2.5: Here are a few remarks concerning Definition 2.2.3. Note that due
to the fact that (gz)z−1 = g, we can replace “⇔” by “⇒” in (iv). Also, assuming
that (ii) holds, one easily sees that (iii) holds if and only if for any g, h ∈ G, v(g) =
v(g−1) ∧ v(gh) ≥ min(v(g), v(h)) holds. Moreover, we can easily show that following
facts are true for any valued group (G, v):

(a) For any g, h ∈ G, v(g) < v(h)⇒ v(gz) < v(hz) and v(g) = v(h)⇒ v(gz) = v(hz) (it
follows from (iv)).
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(b) If v(g) < v(h) then v(gh) = v(g) = v(hg). If v(gh) > v(g), then v(g) = v(h).

(c) For any γ ∈ Γ, Gγ and Gγ are subgroups of G, and Gγ is a normal subgroup of Gγ .
Note however that it can happen that v(g) , v(gz), and in particular Gγ and Gγ are
not always normal in G. This is showed by Example 4.3.36.

(d) Thanks to axiom (iv), conjugation by an element z ∈ G induces an automorphism of
Γ defined by v(g) 7→ v(gz) (note that this map is onto since v(gz−1) is a pre-image
of v(g)). If γ = v(g) then we denote v(gz) by γz. Conjugation by z also induces a
group homomorphism Gγ → Gγ

z and another one from Gγ/Gγ to Gγz/Gγz . The
latter is defined by gGγ 7→ gzGγz .

We will often use the notation Bγ for the quotient group Gγ/Gγ . To simplify notation,
we will denote by πγ instead of πGγ the canonical projection πγ : Gγ → Bγ . The groups
Bγ are called the components of the valued group (G, v), and the pair (Γ, (Bγ)γ∈Γ) is
called the skeleton of the valued group (G, v). There is a natural way of constructing
valued groups of given skeleton. Let an ordered family (Bγ)γ∈Γ of groups be given. Then
the Hahn product G of this family is naturally endowed with a valuation defined by
v(g) := min supp(g). This makes (G, v) a valued group with skeleton (Γ, (Bγ)γ∈Γ).

A particularly interesting example of valuations are the Z-module valuations on
abelian groups. If (G, 0,+) is an abelian group and v : G → Γ ∪ {∞} a valuation,
we say that v is a Z-module valuation if for any g ∈ G and n ∈ Z\{0}, v(ng) = g.
Note that the existence of a Z-module valuation v on G implies that G as well as each
component Bγ of (G, v) is torsion-free. It is then easy to see that v extends uniquely to
a Z-module valuation on Ĝ by setting v(g ⊗ r) := v(g) for any g ∈ G and r ∈ Q with
r , 0. The skeleton of (Ĝ, v) is then (Γ, (B̂γ)γ∈Γ). We refer to [Kuh00, chapter 0] for
more information about Z-module valuations.

Valuations are naturally related to orders. In particular, if (G,≤) is an ordered
abelian group, then ≤ canonically induces a valuation on G. Indeed, let Γ denote the set
of all archimedean classes of G apart from {1}. We saw earlier that ≤ naturally induces
an order on Γ. Now define varch(g) := clarch(g) for g , 1 and varch(1) :=∞. This defines
a Z-module valuation varch : G→ (Γ∪{∞},≤∗), where ≤∗ is the reverse order of ≤. The
valuation varch is called the natural valuation, or archimedean valuation, associated
to the order ≤. We then define the value chain, the components and the skeleton of
the ordered group (G,≤) as the value chain, the components and the skeleton of the
valued group (G, varch). For any γ ∈ Γ, the subgroups Gγ and Gγ are convex in G (so in
particular ≤ induces an order on Gγ/Gγ). Conversely, any convex subgroup of (G,≤) is
of the form ⋃

γ∈∆G
γ for a certain ∆ ⊆ Γ. The set of non-trivial convex subgroups of

(G,≤) is totally ordered by inclusion, its order-type is called the rank of the ordered
group (G,≤). The rank of (G,≤) is order-isomorphic to the set of final segments of Γ
via the map H 7→ varch(H\{0}). We now recall Hahn’s embedding theorem for ordered
groups. If (Γ, (Bγ)γ∈Γ) is the skeleton of (G, varch), then for all γ ∈ Γ, ≤ induces an order
≤γ on Bγ . We then have the following:
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Theorem 2.2.6 (Hahn’s embedding theorem, see [Gla99, Theorem 4.C])
Let (G,≤) be an ordered abelian group. Then (G,≤) is embeddable into a lexicographic
product of archimedean ordered groups. More precisely, (G,≤) is embeddable as an
ordered group into the lexicographic product of the family (B̂γ ,≤γ)γ∈Γ.
Remark 2.2.7: [Gla99, Example 4.5.2] shows that Theorem 2.2.6 fails if we replace B̂γ
by Bγ .

In [Kuh00], a variant of Theorem 2.2.6 was stated for Z-module valuations:
Theorem 2.2.8 ([Kuh00, chapter 0, Theorem 0.27])
Let G be a divisible abelian group and v a Z-module valuation on G with skeleton
(Γ, (Bγ)γ∈Γ). There is a group embedding φ : G ↪→ H

γ∈Γ
B̂γ and an automorphism of

ordered sets ψ : Γ→ Γ such that ψ(v(g)) = min supp(φ(g)) for all g ∈ G (in other words,
φ is an embedding of valued groups).

We can even improve Theorem 2.2.8 into the following, stronger statement, which
will be particularly useful in Section 3.3.2:
Theorem 2.2.9
Let (G, v) be a group endowed with a Z-module valuation, (Γ, (Bγ)γ∈Γ) the skeleton
of (G, v), H := H

γ∈Γ
B̂γ and w the usual valuation on H, i.e w(h) = min supp(h). There

exists a group embedding φ : G ↪→ H such that the following holds:
(1) For any g ∈ G, w(φ(g)) = v(g).

(2) For any γ ∈ Γ and g ∈ G with v(g) = γ, the coefficient of φ(g) at γ is g +Gγ .
Proof. Assume first that G is divisible. Then for every γ ∈ Γ, Bγ is also divisible,
so H = H

γ∈Γ
Bγ . By Theorem 2.2.8, there exists a group embedding ψ : G → H and

an isomorphism of ordered set λ : Γ → Γ such that w(ψ(g)) = λ(v(g)) for every
g ∈ G. Now consider χ : H → H, (hγ)γ∈Γ 7→ (hλ(γ))γ∈Γ. One can easily check that
χ is a group isomorphism and that χ ◦ ψ : G → H satisfies condition (1) of the
theorem. Therefore, we can assume that ψ satisfies (1). For every γ ∈ Γ, consider now
εγ : Bγ → Bγ , g+Gγ 7→ φ(g)γ , where φ(g)γ denotes the coefficient of φ(g) at γ. For each
γ, εγ is well-defined: indeed, if g, h ∈ Gγ are such that v(g−h) > γ, then since φ satisfies
condition (1) we have w(φ(g)− φ(h)) = v(g − h) > γ so φ(g)γ = φ(h)γ . One easily sees
that εγ is a group isomorphism. Define ζ : H → H, (hγ)γ∈Γ 7→ (ε−1

γ (hγ))γ∈Γ. ζ is a group
isomorphism, and it is easy to see that ζ ◦ ψ : G→ H satisfies all the conditions of the
theorem.

Now let us go back to the general case. We know that v extends uniquely to a
Z-module valuation on Ĝ and that the skeleton of (Ĝ, v) is (Γ, (B̂γ)γ∈Γ). We already
proved that there exists a map φ : Ĝ→ H such that w(φ(g)) = v(g) and (φ(g))γ = g+Ĝγ
for any g ∈ Ĝ and γ = v(g). It follows that φ restricted to G satisfies the conditions we
want. �

Remark 2.2.10: It follows from Remark 2.2.7 that Theorem 2.2.9 would fail if we
replaced B̂γ by Bγ .
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2.3 Ordered and valued fields
We now recall basic facts about ordered and valued fields, which will be the basis for
Chapter 5. All fields considered in this thesis are commutative. Most of the results
presented here can be found in [EP05] and [PC83]. Let (K, 0, 1,+, .) be a field. If ≤ is a
total order on K, we say that ≤ is a field order if the following holds:

(i) ≤ is a group order on (K, 0,+).

(ii) for any x, y, z ∈ K, x ≤ y ∧ 0 ≤ z ⇒ xz ≤ yz.

An ordered field is a pair (K,≤) consisting of a field K endowed with a total field
order ≤. An ordered field (K,≤) is called archimedean if (K, 0,+,≤) is an archimedean
ordered group.

A valued field is a a field K endowed with a map v : K → (G,≤) ∪ {∞} such that
the following holds:

(i) (G, 0,+ ≤) is an ordered abelian group.

(ii) the order ≤ is extended to G ∪ {∞} by declaring G <∞.

(iii) for any a ∈ K, v(a) =∞⇔ a = 0.

(iv) for any a, b ∈ K, v(a+ b) ≥ min(v(a), v(b)).

(v) v(ab) = v(a) + v(b) for all a, b , 0.

G is then called the value group of (K, v). Note that if (K, v) is a valued field then
in particular (K, 0,+, v) is a valued group. If (K,≤) is an ordered field, then we define
the natural valuation associated to (K,≤) as the natural valuation associated to the
ordered group (K, 0,+,≤). We use the following notation: K v−→ G

vG−→ Γ to mean that
(K, v) is a valued field with value group G, vG is the natural valuation of the ordered
group G and Γ is the value chain of (G, vG). For a given valuation v on a field K, we
denote by Ov := {x ∈ K | v(x) ≥ 0} its valuation ring, byMv := {x ∈ K | v(x) > 0}
the maximal ideal of Ov and by Uv := {x ∈ K | v(x) = 0} the group of units of Ov. The
residue field of (K, v) is the field Ov/Mv and will be denoted by Kv. We recall that
a field valuation is entirely determined by its valuation ring, in the sense that for any
a, b ∈ K, v(a) ≤ v(b) if and only if ba−1 ∈ Ov. We will sometimes assimilate a valuation
with its valuation ring.

If (K,≤) is an ordered field and v is a valuation on K, then v is called a ≤-convex
valuation if for any a, b ∈ K, 0 ≤ a ≤ b⇒ v(a) ≥ v(b). In this case we also say that v is
compatible with the order ≤. The theory of convex valuations is studied in chapter 2
of [EP05]. An important theorem for convex valuations is the Baer-Krull theorem:

Theorem 2.3.1 (Baer-Krull theorem, see [EP05, theorem 2.2.5])
Let v : K → G∪{∞} be a valuation and let (πi)i∈I be a family of elements of K such that
(v(πi) + 2G)i∈I is an F2-basis of G/2G. Let O(K) be the set of of field orders on K with
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which v is compatible and O(Kv) the set of field orders of the residue field Kv. There is
a bijection: φ : O(K)←→ {−1, 1}I ×O(Kv) defined as follows: φ(≤) = (η,≤Kv), where
η(i) = 1 if and only if 0 ≤ πi and ≤Kv is the order induced by ≤ on the residue field.

An important characteristic of a valued field is its rank, whose definition we recall
here. If v and w are two valuations on a field K, we say that w is a coarsening of v
if Ov ⊆ Ow. We say that w is a strict coarsening of v if moreover v , w. We recall
that if w is a coarsening of v, then v induces a valuation on the residue field Kw which
we denote by v

w . It is the valuation whose valuation ring is the image of Ov under the
canonical homomorphism Ow → Kw. We also recall that, if (K,≤) is an ordered field
and w a coarsening of its natural valuation, then ≤ induces a field order on Kw which
we denote by ≤w and defined by 0 +Mw <w a+Mw ⇔ (0 < a ∧ a <Mw). The set of
all strict coarsenings of a given valuation v is totally ordered by inclusion, and its order
type is what we call the rank of the valued field (K, v). If w is a coarsening of v and
a ∈ K, we say that w is the principal coarsening of v generated by a if Ow is the
smallest overring of Ov containing a. We say that w is a principal coarsening of v if
there exists an a ∈ K such that w is the principal coarsening of v generated by a. We
then define the principal rank of the valued field (G, v) as the order type of the set of
all principal coarsenings of v.

The rank and the principal rank of a valued field can be characterized at three levels:
at the level of the field itself, at the level of its value group and at the level of the value
chain of the value group. Indeed, if K v−→ G

vG−→ Γ is a valued field, then the map
Ow 7→ Gw := v(Uw) defines a bijection from the set of strict coarsenings of v to the set of
non-trivial convex subgroups of (G,≤). Similarly, the map Gw 7→ Γw := vG(G,0

w ) defines
a bijection from the set of non-trivial convex subgroups of G to the set of final segments
of Γ. From this we get the following result:

Proposition 2.3.2 (see [EP05, Section 2.3])
Let K v−→ G

vG−→ Γ be a valued field. Then the rank of (K, v) (respectively, the principal
rank) is equal to the rank (respectively, the principal rank) of the ordered group (G,≤)
and it is equal to the order type of the set of final segments (respectively, of principal
final segments) of (Γ,≤).

Ordered fields can be seen as valued fields; indeed, we can equip an ordered field
(K,≤) with its natural valuation varch, which makes (K, varch) a valued field. We then
define the rank of an ordered field (K,≤) as the rank of the valued field (K, varch).

In [Kuh00], Kuhlmann developed a notion of rank for exponential ordered fields, called
the exponential rank. The exponential rank is a subset of the rank of the ordered field
(K,≤), and takes the exponential structure into account. More precisely, the author of
[Kuh00] defines a notion of compatibility between coarsenings of varch and the exponential
map, and then defines the exponential rank of the field as the order type of the set of
all coarsenings of varch which are compatible with exp. She also showed that, under
some additional assumptions on the exponential, the logarithm log naturally induces a
contraction map χ defined on G by χ(v(a)) := v(log(a)), and that χ itself induces a map
ζ on Γ by ζ(vG(g)) := vG(χ(g)). We recall from [Kuh94] that a contraction map on
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G is a surjective precontraction, and that a precontraction on G is a map χ : G→ G
satisfying the following properties:

(i) χ(g) = 0⇔ g = 0.

(ii) χ preserves ≤.

(iii) χ(g) = −χ(−g).

(iv) If vG(g) = vG(h) and g, h have the same sign, then χ(g) = χ(h).

If moreover χ satisfies |χ(g)| < |g| for all g, then χ is called a centripetal precontrac-
tion. Kuhlmann showed in [Kuh00] that the map χ induced on G by the logarithm of
K satisfies these conditions. She also showed the following result:

Theorem 2.3.3 (see [Kuh00, Theorem 3.25])
The exponential rank of (K,≤) is equal to the order type of the set of all convex subgroups
of G which are closed under χ, and it is also equal to the order type of the set of final
segments of Γ which are closed under ζ.

Similarly, a notion of difference rank for quasi-ordered fields endowed with an au-
tomorphism was developed by Kuhlmann, Matusinski and Point in [KMP17]. Since
our work on differential-valued fields in chapter 5 is inspired by their work, we recall
now the main ideas and results of [KMP17]. Given a valued field K v−→ G

vG−→ Γ and
a field automorphism σ of K, the authors of [KMP17] define σ to be compatible with
v if v(a) ≤ v(b) ⇔ v(σ(a)) ≤ v(σ(b)) holds for every a, b ∈ K. They gave several
characterizations of compatibility:

Theorem 2.3.4 ([KMP17, Theorem 4.2])
Let σ be compatible with v and w be a coarsening of v. The following conditions are
equivalent:

(1) σ is compatible with w.

(2) σ(Ow) = Ow

(3) σ(Mw) =Mw

(4) σ(Uw) = Uw

(5) The map Kw → Kw, a +Mw 7→ σ(a) +Mw is a well-defined v
w -compatible auto-

morphism of Kw.

If σ is compatible with v, then σ naturally induces a map σG on G and a map σΓ
on Γ, respectively defined by σG(v(a)) := v(σ(a)) and σΓ(vG(g)) := vG(σG(g)). If σ
is compatible with v, then the authors of [KMP17] defined the σ-rank of the valued
difference field (K, v, σ) as the the set of coarsenings w of v such that σ is compatible
with w. They also defined the σG-rank of G as the set of convex subgroups of G which
are σG-invariant. Finally, they defined the σΓ-rank of Γ as the set of final segments of Γ
which are σΓ-invariant. They then showed the following:
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Theorem 2.3.5 ([KMP17, Lemma 4.5 and Theorem 4.7])
The σ-rank of (K, v, σ) is in bijection with the σG-rank of G and with the σΓ-rank of Γ.

The authors of [KMP17] also defined the notion of principal σ-rank. A coarsening w
of v is called σ-principal generated by a if Ow is the smallest σ-compatible overring of
Ov containing a. The principal σ-rank of (K, v, σ) is the set of σ-principal coarsenings of
v. Now assume that σ satisfies the condition v(σ(a)) < v(a2) for all a ∈ K with v(a) < 0.
Now define ∼σ on K by a ∼σ b if and only if there is n ∈ N0 with v(σn(a)) ≤ v(b)
and v(σn(b)) ≤ v(a). One can check that ∼σ defines an equivalence relation on K.
We denote by clσ(a) the ∼σ-class of a. The set [K/ ∼σ] is then naturally ordered by
clσ(a) < clσ(b) ⇔ clσ(a) , clσ(b) ∧ v(a) > v(b). Similarly, σG induces an equivalence
relation on G, and σΓ induces an equivalence relation on Γ. The authors of [KMP17]
showed the following:

Theorem 2.3.6 ( [KMP17, Theorem 5.3 and Corollaries 5.4 and 5.5])
The σ-rank of (K, v, σ) is isomorphic to the set of initial segments of K/ ∼σ and to the
set of final segments of Γ/ ∼σΓ . The σ-principal rank of (K, v, σ) is isomorphic to the set
of initial segments of K/ ∼σ which have a maximum, and to the set of final segments of
Γ/ ∼σΓ which have a minimum.

The main goal of chapter 5 below will be to do the analog of the work done in
[KMP17], this time for differential-valued fields.

2.4 Differential-valued fields
In chapter 5, we will develop a notion of rank for differential fields, in the spirit of
what was done for exponential fields in [Kuh00] and for difference fields in [KMP17].
The differential fields which we are interested in are all generalizations of Hardy fields.
This encompasses several classes of fields, whose definitions we want to recall here. We
recall that a derivation on a a field K is a map D : K → K such that for any a, b ∈ K,
D(a+ b) = D(a) +D(b) and D(ab) = aD(b) + bD(a). If D is a derivation on K, then
(K,D) is called a differential field, and the set {a ∈ K | D(a) = 0} is a subfield of K
called the field of constants of (K,D). A differential-valued field is a triple (K, v,D),
where v is a field valuation on K and D a derivation such that the following is satisfied:

(DV1) Ov =Mv + C, where C is the field of constants of (K,D).

(DV2) If a ∈ Ov, b ∈Mv and b , 0, then v(D(a)) > v(D(b)
b ).

This is the definition given by Rosenlicht in [Ros80]. In [AvdD02a], Aschenbrenner and
v.d.Dries defined the slightly more general notion of pre-differential-valued field:
these are the valued fields with a derivation D satisfying (DV2). A pre-differential valued
field does not necessarily satisfy (DV1). Note however that (DV2) implies C ⊆ Uv. In
[AvdD02a], Aschenbrenner and v.d.Dries showed that any pre-differential-valued field can
be embedded into a differential-valued field. If (K, v,D) is a pre-differential valued field,

32



Lehéricy Gabriel - Thèse de doctorat - 2018

then we will denote by φ its logarithmic derivative restricted to elements of non-trivial
valuation, i.e φ : K\(Uv ∪{0})→ K, a 7→ D(a)

a . Note that if (K, v,D) is a pre-differential-
valued field and a ∈ K, a , 0, then (K, v, aD) is also a pre-differential-valued field,
where aD denotes the derivation b 7→ aD(b). A pre-differential-valued field (K, v,D) is
said to have asymptotic integration if for any a ∈ K, there exists b ∈ K such that
v(D(b)− a) > v(a).

The authors of [AvdD02a] also introduced a class of differential-valued fields called
H-fields which are particularly significant for the theory of transseries and the model-
theoretic study of Hardy fields (see in particular [MAv17]). They also introduced the
weaker notion of pre-H-field and showed that any pre-H-field can be embedded into a
H-field. We recall their definition: A pre-H-field is a valued ordered differential field
(K, v,≤, D) such that :

(PH1) (K, v,D) is a pre-differential-valued field

(PH2) Ov is ≤-convex.

(PH3) for all a ∈ K, a > Ov ⇒ D(a) > 0.

A H-field is an ordered differential field (K,≤, D) such that

(H1) (K, v,≤, D) is a pre-H-field, where Ov := {a ∈ K | ∃c ∈ C, |a| ≤ c}.

(H2) Ov = C +Mv

An important consequence of axiom (DV2) is that the map φ naturally induces a
map ψ : G\{0} → G defined by ψ(v(a)) := v(φ(a)). Rosenlicht showed in [Ros80] that
this map satisfies the following properties:

(AC1) ψ(g + h) ≥ min(ψ(g), ψ(h)) for any g, h , 0 with g + h , 0.

(AC2) ψ(ng) = ψ(g) for any g , 0, n ∈ Z\{0}.

(AC3) ψ(g) < ψ(h) + |h| for any g, h , 0.

If moreover K is a H-field, then one can show that ψ also satisfies the condition:

(ACH) ∀g, h , 0, g ≤ h < 0⇒ ψ(g) ≤ ψ(h).

This remark lead the authors of [AvdD02a] to introduce the notion of asymptotic
couple: an asymptotic couple is a pair (G,ψ) satisfying axioms (AC1),(AC2) and
(AC3) above. If moreover (ACH) is satisfied then we say that (G,ψ) is a H-type
asymptotic couple. If (G,ψ) and (H,ψ′) are two asymptotic couples, we say that
ι : (G,ψ) ↪→ (H,ψ′) is an embedding of asymptotic couples is ι is an embedding
of ordered groups such that ι(ψ(g)) = ψ′(ι(g)) for any g ∈ G\{0}. The class of H-type
asymptotic couples is particularly simple to study, because in this case the map ψ is
constant on archimedean classes of G, which is not the case for asymptotic couples in
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general. This will become important in Section 5.4 when we define a derivation on power
series. If (G,ψ) is H-type, we then say that D is a H-derivation. If (K, v,≤, D) is a
pre-H-field, then D is a H-derivation. Note that if (G,ψ) is an asymptotic couple, then
(G,ψ′) is still an asymptotic couple for any translate ψ′ := ψ+h of ψ (where h ∈ G). Note
also that if (K, v,D) is a pre-differential-valued field with asymptotic couple (G,ψ) and
if a ∈ K, then the pre-differential-valued field (K, v, aD) has asymptotic couple (G,ψ′),
where ψ′ is the map g 7→ ψ(g) + v(a). Given an asymptotic couple (G,ψ), we denote by
DG the map DG(g) := ψ(g) + g from G\{0} to G. We denote by Ψ the image of ψ. We
know from [AvdD02a, Proposition 2.3(4)] that DG : G\{0} → G is strictly increasing, so
in particular it is injective. An asymptotic couple (G,ψ) is said to have asymptotic
integration if the map DG is surjective. Obviously, a pre-differential-valued field has
asymptotic integration if and only if its asymptotic couple has it.

2.5 Generalized power series
We have seen above that one way of constructing a valued group of given skeleton is
taking a Hahn product. Similarly, it is possible to construct a valued field of given value
group and given residue field by taking a field of generalized power series. Let k be
a field and let (G,≤) be an ordered abelian group. Define k((G)) := {a = (ag)g∈G ∈
kG | supp(a) is well-ordered}. We endow k((G)) with component-wise addition and a
multiplication defined as follows: a.b = (cg)g∈G, where cg = ∑

h∈G ahbg−h. One can show
that this operation is well-defined and makes (k((G)), 0, 1,+, .) a field, which we call the
field of generalized power series with coefficients in k and exponents in G. The
field K := k((G)) is naturally endowed with a valuation defined by v(a) := min supp(a).
The valued field (K, v) then has value group G and residue field k. It is usual to denote
an element (ag)g∈G of K as a formal sum ∑

g∈G agt
g. If g = v(a), we say that ag is the

leading coefficient and agtg the leading term of a. Note that, as a group, (K, 0,+)
is the Hahn product of the family indexed by (G,≤) whose every member is the group
(k, 0,+). If (k,≤) is an ordered field, then there is a natural way of extending ≤ to an order
on K, namely by taking the lexicographic product of the family (≤)g∈G (one can easily
show that this is indeed a field order). In other words, we define ∑

g∈G agt
g ≤

∑
g∈G bgt

g

if and only if ah ≤ bh, where h = v(a− b).
In chapter 5, we will have to deal with infinite sums in fields of generalized power

series. However, an infinite sum is a priori not well-defined, which is why we need to
introduce the notion of summable family. Let (ai)i∈I be a family of elements of K with
ai = ∑

g∈G ai,gt
g. We say that the family (ai)i∈I is summable if the following two

conditions are satisfied:

(i) The set A := ⋃
i∈I supp(ai) is well-ordered

(ii) for any g ∈ A, the set Ag := {i ∈ I | ai,g , 0} is finite.

If the family (ai)i∈I is summable, we define its sum as ∑
g∈G bgt

g ∈ K, where bg = 0 if
g < A and bg = ∑

i∈Ag ai,g if g ∈ A.
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The “classical” field of power series C((Z)) admits a natural derivation defined
by D(∑

n∈Z ant
n) = ∑

n∈Z nant
n−1. However, this definition makes no sense for an

arbitrary group of exponents G, since it is not clear what “nan” and “n − 1” should
mean. Therefore, there is no “obvious” way of defining a derivation on k((G)). If k itself
is already endowed with a derivation D, then we can extend D to k((G)) by setting
D(∑g∈G agt

g) := ∑
g∈GD(ag)tg. This idea was developed by Scanlon in [Sca00, Section

6]. However, such a derivation does not make (k((G)), v,D) a pre-differential-valued field.
Indeed, if D is a derivation as in [Sca00], then for all g ∈ G we have D(tg) = 0, which
contradicts axiom (DV2). Scanlon’s derivation also has another drawback, which is the
fact that it is not strongly linear. A derivation D on K is said to be strongly linear
if D(∑

g∈G agt
g) = ∑

g∈G agD(tg) for any ∑
g∈G agt

g ∈ K. Strong linearity is a natural
condition to require when working with generalized power series, because this condition is
satisfied by the usual derivation of C((Z)). The problem of defining a derivation making
(K, v,D) a differential-valued field was tackled by Kuhlmann and Matusinski in [KM12]
and [KM11]. We will also address this problem in Section 5.4.

2.6 C-relations
Chapter 4 of this thesis deals with C-groups, whose definition we recall here. The notion
of C-structure was first introduced by Adeleke and Neumann in [AN96] and [AN98].
Macpherson and Steinhorn then developed the notion of C-minimality and C-minimal
groups in [MS96]. Delon then gave a slightly more general definition of C-structures in
[Del11], which is the one we give here.

A C-relation on a set M (see [Del11]) is a ternary relation C satisfying the universal
closure of the following axioms:

(C1) C(x, y, z)⇒ C(x, z, y)

(C2) C(x, y, z)⇒ ¬C(y, x, z)

(C3) C(x, y, z)⇒ C(w, y, z) ∨ C(x,w, z)

(C4) x , y ⇒ C(x, y, y)

Note that (C2) implies ¬C(x, x, x) for all x. Note also that In [MS96], Macpherson
and Steinhorn consider a more restrictive notion of C-relations, were axiom (C4) is
replaced with the axioms ∃x, y, x , y and x , y ⇒ (∃z, (y , z ∧ C(x, y, z))). The notion
of C-relation studied in [MS96] is now called a dense C-relation.

If G is a group and C a C-relation on G, then we say that C is compatible (with
the group operation) if C(x, y, z) implies C(vxu, vyu, vzu) for any x, y, z, u, v ∈ G. A
C-group is a pair (G,C) consisting of a group G with a compatible C-relation C.

Example 2.6.1
There are two fundamental examples of C-groups:
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(a) If (G,≤) is a totally ordered group, then ≤ induces a compatible C-relation defined
by C(x, y, z) ⇔ (y < x ∧ z < x) ∨ (y = z , x). Such a C-relation is called an
order-type C-relation. If P is the positive cone of (G,≤), then we can express C
with P by the formula C(x, y, z)⇔ (yx−1 < P ∧ zx−1 < P ) ∨ (y = z , x).

(b) If (G, v) is a valued group, then v induces a compatible C-relation by
C(x, y, z) ⇔ v(yz−1) > v(xz−1). Such a C-relation is called a valuational C-
relation.

If (G,C) is a C-group, then we say that C is a fundamental C-relation if it is either
order-type or valuational.

We say that a structureM = (M,C, . . . ) endowed with a C-relation is C-minimal if,
for every N = (N,C, . . . ) such that N ≡M, every subset of N definable with parameters
is quantifier-free definable in the language {C}.

C-relations are connected to meet-semilattice trees. We recall that a meet-semilattice
tree is a partially ordered set T such that:

(i) For any x ∈ T, {y ∈ T | y ≤ x} is totally ordered.

(ii) Any two elements of T has a greatest lower bound.

If T is a meet-semilattice tree and M a set of maximal branches of T, then we can define
a C-relation on M as follows: C(x, y, z) holds if and only if the meet of x and z lies
strictly below the meet of y and z. Conversely, if (M,C) is an arbitrary C-structure
then we can canonically associate a meet-semilattice tree T, called the canonical tree of
(M,C), so that (M,C) is isomorphic to a set of maximal branches of T endowed with the
C-relation given above. To study C-minimal structures, it might be practical to consider
their canonical trees: in [MS96], Macpherson and Steinhorn described C-minimal groups
by looking at the action induced by the group on its canonical tree. We will do the same
in Section 4.4.1.

2.7 Quasi-orders
We now introduce the central notion of this thesis, the notion of quasi-order. Our use
of quasi-orders is inspired by Fakhruddin’s work on quasi-ordered fields in [Fak87] (see
further below).

Definition 2.7.1
A quasi-order (q.o.) is a binary relation which is reflexive, transitive and total.

If - is a quasi-order on a set A, then - induces an equivalence relation on A defined
as follows: we say that a ∼ b if and only if a - b - a.

Notation
The symbol - will always denote a quasi-order, whereas ≤ will always denote an order.
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The symbol ∼ will always denote the equivalence relation induced by the quasi-order
- and cl(a) will denote the class of a for this equivalence relation. The notation a � b
means a - b ∧ a / b. If S, T are two subsets of a quasi-ordered set (A,-), the notation
S - T (respectively S � T ) means that s - t (respectively s � t) for any (s, t) ∈ S × T .
If a ∈ A, we write S - a instead of S - {a}.

The q.o - induces a total order on the quotient A/ ∼ by cl(a) ≤ cl(b) if and only if
a - b. There are two particularly important examples of q.o.’s:

Example 2.7.2 (a) A total order is in particular a q.o.

(b) Let (G, v) be a valued group. Then a - b⇔ v(b) ≤ v(a) defines a quasi-order on G,
called the quasi-order induced by v. We say that a q.o. on a group is valuational if
it is induced by a valuation. A q.o. induced by a Z-module valuation is called Z-
module valuational. We will say that (G,-) is a valuationally quasi-ordered
group if - is valuational.

Remark 2.7.3: If - is a q.o. on a group G, then - is valuational if and only if the
following conditions hold:

(i) For all g ∈ G, 1 , g ⇒ 1 � g.

(ii) For all g, h ∈ G, g - h⇒ gh - h.

(iii) For all g ∈ G, g ∼ g−1.

(iv) For all g, h, z ∈ G, g - h⇒ gz - hz.

If (A,-A) and (B,-B) are two quasi-ordered sets and φ : A → B a map, then we
say that φ is increasing if for any a, b ∈ A, a -A b ⇒ φ(a) -B φ(b). We say that φ is
quasi-order-preserving if the stronger condition a -A b ⇔ φ(a) -B φ(b) holds. We
say that φ is quasi-order-reversing if a -A b ⇔ φ(b) -B φ(a). A coarsening of a
q.o. - is a q.o. -∗ such that a - b ⇒ a -∗ b for any a, b ∈ A. We also say that - is
a refinement of -∗. The trivial q.o. on A is the q.o which only has one equivalence
class, i.e a - b for every a, b ∈ A; we usually denote it by -t. Many notions pertaining
to orders have a useful analog for quasi-orders, which we will define now. If a, c, b ∈ A,
then we say that c is between a and b if a - c - b or b - c - a holds. If the stronger
condition a � c � b∨ b � c � a holds, then we then say that c is strictly between a and
b. If S is a subset of A, we define the maximum (respectively minimum) of S as the
set of all elements s of S such that t - s (respectively s - t) for every t ∈ S; we denote it
by max(S) (respectively min(S)). Note that the maximum of S is always defined but
can be empty. We say that S is:

• an initial segment (respectively, a final segment) of A if for every s ∈ S and
a ∈ A, a - s (respectively, s - a) implies a ∈ S

• convex in A if for every s, t ∈ S and every a ∈ A, s - a - t implies a ∈ S.
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• strictly convex in A if for every s, t ∈ S and every a ∈ A, s � a � t implies a ∈ S.

• left-convex (respectively, right-convex) if for every s, t ∈ S and every a ∈ A,
s - a � t (respectively s � a - t) implies a ∈ S.

Remark 2.7.4: In the case of orders, the notions of convex and strictly convex coincide,
but they are different in general for quasi-orders.

If S is strictly convex, we define the convexity complement of S as the smallest
subset T of A\S such that S ∪ T is convex. Note that being left-convex or right-convex
implies being strictly convex. We can characterize strict convexity by the following
lemma:

Lemma 2.7.5
For any S ⊆ A, S is strictly convex if and only if one of the following conditions holds:

(i) S is convex. In that case the convexity complement of S is ∅.

(ii) min(S) , ∅ and S ∪ cl(m) is convex for any m ∈ min(S). In that case S is
right-convex and its convexity complement is cl(m)\S.

(iii) max(S) , ∅ and S ∪ cl(M) is convex for any M ∈ max(S). In that case S is
left-convex and its convexity complement is cl(M)\S.

(iv) min(S),max(S) are both non-empty and S ∪ cl(m) ∪ cl(M) is convex for any
m ∈ min(S) and M ∈ max(S). In that case the convexity complement of S is
(cl(m) ∪ cl(M))\S.

Proof. It is easy to check that if one of these conditions hold then S is strictly convex. Let
us prove the converse. Assume that S is strictly convex but not convex. Then there exists
m, t ∈ S and a < S such that m - a - t. However, since S is strictly convex, we cannot
have m � a � t. Without loss of generality, we can thus assume that m ∼ a. Assume
that m < min(S) and m < max(S). Then there are s,M ∈ S with s � a ∼ m � M .
Since S is strictly convex it follows that a ∈ S, which is a contradiction. Thus, we
either have m ∈ min(S) or m ∈ max(S). If S ∪ cl(m) is convex we are in case (ii) or
(iii). Assume then that it is not convex. Without loss of generality, we may assume
m ∈ min(S). Take b < S ∪ cl(m) and M ∈ S ∪ cl(m) with m � b -M . Since M < cl(m)
we have M ∈ S. By strict convexity of S we must have b ∼M . If M < max(S) then we
would have m � b �M ′ for a certain M ′ ∈ S which would imply b ∈ S, so we must have
M ∈ max(S). Now let us proves that S ∪ cl(m) ∪ cl(M) is convex, so that we are in case
(iv). Let c ∈ A such that there is s, t ∈ S ∪ cl(m)∪ cl(M) with s - c - t. Since m,M are
respectively minimal and maximal in S we have m - c -M . If c < cl(m) ∪ cl(M) then
we even have m � c �M , which by strict convexity of S implies c ∈ S. The statements
about the convexity complement are clear. �

Our original motivation for considering quasi-orders was to find a good generalization
of total orders and valuations. Indeed, many results from the theory of ordered fields are
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similar to some results from the theory of valued fields, but are still stated as separate
statements. In [Fak87], Fakhruddin introduced the notion of quasi-ordered field, in the
hope of unifying the theory of ordered fields with the theory of valued fields. He gave the
following definition of a quasi-ordered field:

Definition 2.7.6
A quasi-ordered field is a field K endowed with a quasi-order - satisfying the following
axioms:

(Q1) ∀x(x ∼ 0⇒ x = 0)

(Q2) ∀x, y, z(x - y / z ⇒ x+ z - y + z)

(Q3) ∀x, y, z, (x - y ∧ 0 - z)⇒ xz - yz

From the definition of q.o. fields, we easily see the following:

Proposition 2.7.7
If (K,≤) is an ordered field, then it is in particular a quasi-ordered field (i.e ≤ satisfies
the axioms above). If (K, v) is a valued field then (K,-v) is a quasi-ordered field, where
-v denotes the q.o. induced by v.

Conversely, Fakhruddin showed the following:

Theorem 2.7.8 (Fakhruddin’s dichotomy, see [Fak87, Theorem 2.1])
Let (K,-) be a quasi-ordered field. Then - is either a field order or the quasi-order
induced by a field valuation.

Proposition 2.7.7 and Theorem 2.7.8 show that the axiomatization of Definition 2.7.6
is a good unification of orders and valuations on fields, by which we mean that some
statements from the theory of ordered fields can be unified into a single statement with
statements from the theory of valued fields. For example, in [KMP17], Kuhlmann, Point
and Matusinski defined the notion of compatibility between a valuation and a q.o., which
generalizes both the notion of v being a convex valuation (when the q.o. is an order)
and the notion of v being a coarsening of a valuation (when the q.o. is valuational).
They then showed the following, which generalizes a well-known statement about convex
valuations:

Theorem 2.7.9 (see [KMP17, Theorem 2.2])
Let (K,-) be a quasi-ordered field and v a valuation on K. The following are equivalent:

(1) v is compatible with -.

(2) Ov is convex in (K,-).

(3) Mv is convex in (K,-).

(4) Mv � 1.
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(5) - induces a q.o on the residue field Ov/Mv.

In the special case where - is an order, Theorem 2.7.9 gives conditions for a valuation
v to be ≤-convex. If - comes from a valuation w then Theorem 2.7.9 gives conditions for
v to be a coarsening of w.

The main motivation behind the theory developed in chapter 3 is to unify the theory
of totally ordered groups with the theory of valued groups, and in particular we would like
to find analogs of Theorems 2.7.9 and 2.3.1 for quasi-ordered groups. Throughout this
thesis, a quasi-ordered group (q.o. group) is just a group endowed with a quasi-order
without any further assumption. The following definition will be important in Chapters
3 and 4:

Definition 2.7.10
Let (G,-) be a q.o. group and g ∈ G. We say that g is:

• v-type if g ∼ g−1.

• o-type if g = 1 ∨ g / g−1.

• o+-type if g−1 � g.

• o−-type if g � g−1.

Note that 1 is the only element which is both v-type and o-type. The reason for this
terminology will become clear in chapters 3 and 4. Roughly speaking, in the setting of
this thesis, the o-type elements will correspond to a part of the group where the q.o.
is an order, and the v-type elements will correspond to a part of the group where the
q.o. behaves like a valuation. The set of v-type (respectively o-type/ o+-type/o−-type)
elements of a q.o. group will usually be denoted by V (respectively O/ O+/O−).

A homomorphism of q.o. groups is a homomorphism of groups φ : (G,-G) →
(H,-H) which is also increasing. If moreover φ is injective, and if φ−1 is also increasing,
then we will say that φ is an embedding of q.o. groups. If moreover φ is bijective, then
we say that φ is an isomorphism of q.o. groups. Note that a bijective homomorphism
of q.o. groups is not necessarily an isomorphism of q.o. groups. To see this, consider Q2

endowed with the lexicographic product ≤ of the usual order of Q. Now let - denote
the valuational q.o associated to the archimedean valuation of (Q2,≤). The identity
map on Q2 is a homomorphism of q.o groups from (Q2,≤) to (Q2,-), but it is not an
isomorphism.

In the theory of ordered groups, we know that there is a notion of induced order on a
quotient G/H if H is a convex normal subgroup of (G,≤). We will want to develop a
similar notion for q.o.’s in Chapters 3 and 4. Note that, if (G,-) is any q.o. group and
H a normal subgroup of G, then - naturally induces a binary relation on G/H, which
we will also denote by -, and which is defined as follows:

g1H - g2H ⇔ (∃h1, h2 ∈ H, g1h1 - g2h2)
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It is easy to see that - thus defined on G/H is always reflexive and total, but not
always transitive, which is why we introduce the following definition:

Definition 2.7.11
Let (G,-) be a q.o. group and H a normal subgroup of G. We say that - induces a
q.o. on G/H if the following relation defined on G/H is transitive:

g1H - g2H ⇔ (∃h1, h2 ∈ H, g1h1 - g2h2)

In that case, the relation - thus defined on G/H is a total q.o which we call the q.o
induced by - on G/H.

In the case where - is an order, the definition of the q.o. induced on the quotient
given in Definition 2.7.11 coincides with the definition given in [Fuc63].

We also need to introduce a notion of lifting of q.o.’s in order to obtain an analog
of theorem 2.3.1. The process of lifting should be thought of as the opposite process of
quotienting. For example, if H is a normal subgroup of G and if the quotient G/H is
endowed with a q.o. -G/H , then a lifting of -G/H to G should be a q.o. whose quotient
on G/H is -G/H . We actually define a more general notion of lifting which holds not just
for a quotient G/H but for a (possibly infinite) family of quotients. Let G be a group
and v : G→ Γ ∪ {∞} a valuation. Assume that for each γ ∈ Γ, the quotient Gγ/Gγ is
endowed with a q.o -γ .

Definition 2.7.12
A lifting of (-γ)γ∈Γ to G is a q.o. - on G such that for every γ ∈ Γ, - induces the q.o.
-γ on Gγ/Gγ .

Note that a lifting does not always exist, and if it exists it might not be unique.
In the theory of ordered groups, we have a natural notion of product which is the

lexicographic product. It seems natural to define a notion of product for quasi-orders
as well. Several notions of product are possible. The notion of lexicographic product
of ordered sets can easily be generalized to q.o. sets: given two q.o. sets (A,-A) and
(B,-B), we define their lexicographic product as the q.o. set (A × B,-), where - is
defined as follows: (a1, b1) - (a2, b2) ⇔ (a1 � a2) ∨ (a1 ∼ a2 ∧ b1 - b2). However, this
notion of product is not quite adapted to the study of q.o. groups, because the product
of two valuational q.o.’s is not in general valuational:

Example 2.7.13
Take B1 = B2 = Z and let -1=-2 be the q.o induced by the trivial valuation on Z. Let
(G,-) be the lexicographic of (B1,-1) and (B2,-2). Now let g := (1, 0) and h := (0, 1).
Then we have h � g, but g � g + h, which contradicts the ultrametric inequality.

For this reason, we introduce another notion of product. Let (Bγ ,-γ)γ∈Γ be a family
of q.o. groups indexed by an ordered set Γ. Set G := Hγ∈ΓBγ and let v denote the usual
valuation on G.
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Definition 2.7.14
The valuational product of the family (Bγ ,-γ)γ∈Γ is the q.o. group (G,-val), where
-val is defined on G as follows: (gγ)γ∈Γ -val (hγ)γ∈Γ ⇔ gδ - hδ where δ = min(v(g), v(h)).

We then have the following:

Proposition 2.7.15
Let (Bγ ,-γ)γ∈Γ be an ordered family of valuationally quasi-ordered groups and let
(G,-val) be the valuational product of the family (Bγ ,-γ)γ∈Γ. Then -val is valuational.

Proof. We use Remark 2.7.3 Let g, h, z ∈ G. Assume h , 1 and set δ := v(h). Since
-δ is valuational, we have 1 �δ hδ and hδ ∼δ h−1

δ , which implies by definition of -val
that 1 �val h and h ∼val h

−1. Now assume g -val h and set δ = min(v(g), v(h)). We
have gδ -δ hδ. Since -δ is valuational, it follows that gzδδ -δ h

zδ
δ and gδhδ -δ hδ. Now

note that hz = (hzγγ )γ∈Γ and gz = (gzγγ )γ∈Γ. It follows that δ = min(v(gz), v(hz)), and
since gzδδ -δ h

zδ
δ it follows from the definition of -val that gz -val h

z. Moreover, we have
v(gh) ≥ min(v(h), v(g)), so δ = min(v(g), v(gh)). Since gδhδ -δ hδ, it follows from the
definition of -val that gh -val h.

�

However, it is easy to see that the valuational product of ordered sets is not an
ordered set:

Example 2.7.16
Let B1 = B2 = Z and let -1=-2 be the usual order on Z. Let (G,-) be the valuational
product of the family (B1,-1), (B2,-2). Then we have (1, 0) ∼ (1, 1), so - cannot be an
order on G.

Note however that the set of positive elements in (G,-) remains the same as in the
lexicographic product of B1, B2. In chapter 4, this will allow us to use the valuational
product as a product which can be used both for valuations and orders.

In view of finding an analog of Theorem 2.7.9 for groups, we are now going to give a
few lemmas which will allow us to prove the analog of 2.7.9 both for compatible q.o.’s (in
chapter 3) and for C-q.o.’s (in chapter 4). We fix an arbitrary q.o. group (G,-) and a
valuation v : G→ Γ ∪ {∞}.

Definition 2.7.17
We say that v is compatible with - if for every g, h ∈ G, 1 - g - h⇒ v(g) ≥ v(h).

Lemma 2.7.18
The following statements are equivalent:

(i) For all γ ∈ Γ, Gγ is convex in (G,-).

(ii) For all γ ∈ Γ, Gγ is convex in (G,-).

(iii) For all γ ∈ Γ, Gγ is convex in (Gγ ,-).
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Proof. Let us show (i)⇒(ii). Assume (i) holds and let γ ∈ Γ, g, h ∈ Gγ and f ∈ G with
h - f - g. Set δ := min(v(g), v(h)). We have δ > γ so Gδ ⊆ Gγ . Moreover, g, h ∈ Gδ,
which by --convexity of Gδ implies f ∈ Gδ ⊆ Gγ . This proves (ii). The implication
(ii)⇒(iii) is obvious, so let us show (iii)⇒(i). Assume (iii) holds and let g, h ∈ Gγ . If
f < Gγ then v(f) < γ ≤ v(g), v(h) hence g, h ∈ Gv(f). Since f ∈ Gv(f)\Gv(f), it follows
from assumption (iii) that we cannot have h - f - g. This proves (i).

�

Lemma 2.7.19
v is compatible with - if and only if {g ∈ Gγ | 1 - g} is convex in (G,-) for all γ ∈ Γ.

Proof. Assume v is compatible with -. Take f, h ∈ Gγ and g ∈ G with 1 - f - g - h.
Then by compatibility of v with -, we have v(g) ≥ v(h) > γ, hence g ∈ Gγ . This proves
that {g ∈ Gγ | 1 - g} is convex in (G,-). Conversely, assume that each {g ∈ Gγ | 1 - g}
is convex in (G,-). Let g, h ∈ G with v(h) > v(g). By definition of Gv(g), we then have
h ∈ Gv(g). By convexity of {f ∈ Gv(g) | 1 - f}, it follows that we cannot have 1 - g - h.
Thus, we have 1 - g - h⇒ v(g) ≥ v(h), so v is compatible. �

Lemma 2.7.20
Let - be a q.o. such that:

(∗)
{

cl(1) = {1}.
g - h / f−1 ⇒ gf - hf ∧ fg - fh for any g, h, f ∈ G.

Let H be a normal subgroup of G. Then H is convex in (G,-) if and only if - induces
a q.o. on G/H such that cl(1.H) = {1.H}. Moreover, if H is convex in (G,-), then
for every g ∈ G\H, g - g−1 if and only if gH - g−1H. In particular, g is v-type (resp.
o+-type, o−-type) if and only if gH is v-type (resp. o+-type, o−-type).

Proof. Assume H is convex and take g1, g2, g3 ∈ G with g1H - g2H and g2H - g3H.
We want to show that g1H - g3H. If g1 - g3, then this is immediate, so assume
g3 - g1. There is h1, h2, h

′
2, h3 ∈ H with g1h1 - g2h2 and g2h

′
2 - g3h3. Assume first

that g2, g3 ∈ H. If g1 < H, then by convexity we have g1 / h
−1
1 . By (∗), the inequality

g3 - g1 then implies g3h1 - g1h1. We thus have g3h1 - g1h1 - g2h2, which by convexity
of H implies g1 ∈ H, which is a contradiction. Therefore, we must have g1 ∈ H, and it
follows that g1H - g3H. Now assume g3 ∈ H and g2 < H. By convexity of H, we have
g2h2 / (h′2)−1h2, so by (∗) the inequality g1h1 - g2h2 implies g1h1h

−1
2 h′2 - g2h

′
2 hence

g1h1h
−1
2 h′2 - g3h3, hence g1H - g3H. Now assume that g3 < H. Then by convexity of H,

we have g3h3 / h
−1
2 h′2, so by (∗) the inequality g2h

′
2 - g3h3 implies g2h2 - g3h3(h′2)−1h2,

hence g1h1 - g3h3(h′2)−1h2, hence g1H - g3H. This proves that - induces a q.o. on H.
If gH ∼ H, then there are h1, h2, h3, h4 ∈ H with gh1 - h2 and h3 - gh4. If g < H, then
by convexity gh4 / h

−1
1 h4, so by (∗) the inequality h3 - gh4 implies h3h

−1
4 h1 - gh1, so

we have h3h
−1
4 h1 - gh1 - h2, which by convexity of H implies g ∈ H: contradiction.

Thus, g ∈ H. This proves that cl(1.H) = {1.H}. Now assume that - induces a q.o. on
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G/H such that cl(1.H) = {1.H}, and let us show that H is convex in G. Take f, g, h ∈ G
with f - g - h and f, h ∈ H. By definition of the induced q.o., we have fH - gH - hH,
hence gH ∼ 1.H, hence g ∈ H by assumption. This proves that H is convex in G.

For the second statement, note that g - g−1 obviously implies gH - g−1H, so we just
have to prove the converse. Assume then without loss of generality that g−1 � g. If g � 1,
then by (∗) we have 1 - g−1, which is a contradiction, so we must have 1 - g / g−1. By
(∗), this implies 1 - g - g2. Now assume for a contradiction that gH - g−1H. Then
there are h1, h2 ∈ H with gh1 - g−1h2. By convexity of H, we have g−1h2 / h1, hence
by (∗): g - g−1h2h

−1
1 . Since g−1 � g, we cannot have g−1h2h

−1
1 ∼ g−1, so by (∗) we have

g2 - h2h
−1
1 . We thus have 1 - g - g2 - h2h

−1
1 , which by convexity of H implies g ∈ H:

contradiction. Thus, we must have g−1H � gH. �

44



Chapter 3

Compatible quasi-ordered abelian
groups

Introduction
The object of this chapter is the study of a class of quasi-ordered groups, which we call
compatible quasi-ordered abelian groups (compatible q.o.a.g.’s), whose axiomatization was
inspired by the axiomatization of quasi-ordered fields given by Fakhruddin in [Fak87]
(see Definition 2.7.6). The original purpose behind the theory of quasi-ordered fields
developed in [Fak87] was to develop a theory which would unify the theory of ordered
fields with the theory of valued fields. Proposition 2.7.7 and Theorem 2.7.8 show that
the axiomatization of Definition 2.7.6 is very suitable for this purpose. It is thus natural
to try to do the same for groups. More precisely, we want to know if the group analog of
Definition 2.7.6 (which is what we call a compatible q.o.a.g.) gives us an interesting class
of quasi-ordered groups, i.e a good generalization of ordered and valued abelian groups.
This raises the following question: Is there a group analog of Theorem 2.7.8? If not, what
is the structure of a compatible q.o.a.g.? We answer these questions in Section 3.1, where
we show that a compatible q.o.a.g. is an extension of a valued group by an ordered group
(see Theorems 3.1.26, 3.1.28 and 3.1.29). In Section 3.2, we use compatible q.o.a.g.’s
to show a group analog of Theorem 2.7.9 (Theorem 3.2.2). In Section 3.3, we define a
notion of product for the category of compatible q.o.a.g.’s, called the compatible product.
We use this notion of product to show a “Hahn’s embedding theorem” for compatible
quasi-ordered groups which generalizes Theorem 2.2.6 (see Theorem 3.3.8). We also show
that the compatible product of an ordered group by a valued group preserves elementary
equivalence in Section 3.3.3 (Theorem 3.3.13). Finally, in Section 3.4, we develop a notion
of model-theoretic minimality for compatible q.o.a.g.’s which generalizes o-minimality.
We show that this notion of minimality is equivalent to C-minimality, thus establishing a
connection between compatible q.o.a.g.’s and C-groups (see Proposition 3.4.4).

Every group appearing in this chapter is abelian, which is why we will adopt the
additive notation.
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3.1 The structure of compatible q.o.a.g.’s
The definition of compatible q.o.a.g.’s is an adaptation of definition 2.7.6 for abelian
groups:

Definition 3.1.1
Let G be an abelian group and - a q.o. on G. We say that - is compatible (with +)
if it satisfies the following axioms:

(Q1) ∀x(x ∼ 0⇒ x = 0).

(Q2) ∀x, y, z(x - y / z ⇒ x+ z - y + z).

We also say that the pair (G,-) is a compatible q.o.a.g. (quasi-ordered abelian
group).

As in the case of fields, it is easy to check that, if (G,-) is actually an ordered abelian
group or if - is a valuational q.o., then - is compatible with +. However, we have no
analog of Fakhruddin’s dichotomy, i.e there are some compatible q.o.’s which are not an
order and do not come from a valuation. We will show this now by giving three different
examples where the q.o. is neither an order nor valuational. One could directly check
that these q.o.’s satisfy axioms (Q1) and (Q2), but this will actually be a consequence of
Theorem 3.1.26.

Example 3.1.2 (a) Consider the group G := Z2 endowed with the following quasi-order:
(a, b) - (c, d)⇔ (c , 0)∨(c = a = 0∧b ≤ d), where ≤ is the usual order of Z. The q.o.
is an order on Go := 0×Z (it coincides with ≤) so it cannot be valuational. However,
it cannot be an order on Z2 since we have (a, b) ∼ (c, d) for any a, c ∈ Z\{0} and
any b, d.

(b) Set G := Z and Go := 5Z. Endow Go with its usual order ≤, and extend ≤ to a q.o.
- on G by declaring that f � g ∼ h for any f ∈ Go and g, h < Go. Then (G,+,-) is
a compatible q.o.a.g.

(c) Let (K,≤, σ) be an ordered difference field with the assumptions of [KMP17, Section
5]. In [KMP17], the authors defined an equivalence relation ∼σ on PK := K≥0\Ov.
This equivalence relation is related to the difference rank of (K,≤, σ) (see Theorem
2.3.6 above). They also showed that the ∼σ-classes are naturally ordered. This gives
rise to a q.o. on PK defined as a -σ b⇔ clσ(a) ≤ clσ(b) (clσ denotes the ∼σ-class of
a). This q.o. can easily be extended to K\Ov by declaring that −a ∼σ a for every a.
Note that -σ satisfies the ultrametric inequality on K\Ov. Now define a q.o. - on K
as follows: if a, b ∈ Ov, then a - b⇔ a ≤ b; if a, b < Ov then a - b⇔ a -σ b; finally,
declare a � b whenever a ∈ Ov and b < Ov. This makes (K,+,-) a compatible
q.o.a.g. The q.o. - contains both the information about the order ≤ of K and some
information about the σ-rank of K. Note that we can do a similar construction with
H-fields if we replace -σ by the q.o. -φ defined in Section 5.3.1.
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Remark 3.1.3: (i) In the case where - is actually an order, note that (Q2) is techni-
cally weaker than axiom (OG) (see Section 2.2) because of the condition “y / z”.
However, the only ordered group which satisfies (Q2) but not (OG) is Z/2Z with
the order 0 < 1 (see Proposition 3.1.8 below), so (Q2) and (OG) are essentially
equivalent for orders.

(ii) The condition “y / z” in (Q2) is essential if we want to include valuational q.o.’s.
Indeed, if - is a valuational q.o., and if we take x , y = −z such that x - y, then
we have x+ z , 0 and y + z = 0 which implies y + z � x+ z.

3.1.1 o-type and v-type elements

We now fix a compatible q.o.a.g. (G,-) and investigate its structure. As mentioned in
the introduction, we want to show that (G,-) is a mix of ordered and valued groups.
The idea is to use the distinction between o-type and v-type elements (see Definition
2.7.10). The set of o-type elements of G will be denoted by O, whereas the set of v-type
elements of G will be denoted by V. We also set V∗ := V\{0}. We recall that ord(g)
denotes the order of g.

Proposition 3.1.4
Let g ∈ G. The following conditions are equivalent:

(1) g ∈ O.

(2) cl(g) = {g} ∧ ord(g) , 2.

(3) g - 0 ∨ −g - 0.

Proof. (2)⇒(1) is immediate. Now assume that g ∈ O and 0 - −g. Since g ∈ O, we
have −g / g. It then follows from 0 - −g and (Q2) that g - −g + g = 0. This shows
(1)⇒(3). Now assume that (3) holds and let us show (2). Without loss of generality,
we may assume g - 0 and g , 0. By (Q1), we have g - 0 / −g, which by (Q2) implies
0 - −g. If g ∼ −g were true, then we would have g ∼ 0, which is a contradiction to
(Q1). Thus, we have g / −g. This implies in particular ord(g) , 2. Now let us show
cl(g) = {g}. Let h ∈ G with h ∼ g. We have h - g and g - h. Since −g / g ∼ h, we
can apply (Q2) to both inequalities and we get h− g - 0 and 0 - h− g which implies
g − h ∼ 0, which by (Q1) means h = g. This proves cl(g) = {g}. �

Remark 3.1.5: Proposition 3.1.4 already motivates the terminology “o-type”. Indeed,
the fact that cl(g) = {g} holds for o-type elements implies in particular that - is an
order on O.

As mentioned in Remark 3.1.3, (Q2) is not the same as axiom (OG) of ordered abelian
groups, and it can in fact happen that a compatible quasi-order is an order but does not
satisfy (OG):
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Example 3.1.6
If we order Z/2Z by 0 < 1 then (Z/2Z,≤) does not satisfy (OG) but it is a compatible
q.o.a.g. More precisely, ≤ is the q.o induced by the trivial valuation on Z/2Z.

Remarkably, this is the only pathological case. To show this, we need the following
lemma:

Lemma 3.1.7
Assume - is an order and assume that G has an element of order 2. Then G = Z/2Z.

Proof. Let g be an element of order 2. By Proposition 3.1.4, we then have 0 - g. Let
h , g. Since - is an order, we have h / g. Therefore, we can apply (Q2) to 0 - g, which
yields h - g+h. If h , 0, then g / g+h, so we can apply (Q2) to the previous inequality
and get g + h - g + g + h = h, hence h ∼ g + h. But since - is an order, this implies
h = g + h hence g = 0, which is a contradiction. This proves h , g ⇒ h = 0. We thus
have G = {0, g} � Z/2Z. �

Proposition 3.1.8
Let (G,-) be a compatible q.o.a.g. If - is an order and if G , Z/2Z, then (G,-) is an
ordered abelian group, i.e. (OG) is satisfied.

Proof. We want to prove: ∀x, y, z ∈ G, x - y ⇒ x+ z - y + z. Since - is an order, we
have y ∼ z ⇒ y = z for any y, z ∈ G. Thus, we only have to consider the case where
y = z, since the other cases are given by axiom (Q2). Assume then that x - y. Since
G , Z/2Z, Lemma 3.1.7 ensures that y , −y, so y / −y. We can then apply (Q2) to
x - y and we get x − y - 0. Since 2y , 0, we can apply (Q2) to this inequality and
obtain x+ y - y + y, which is what we wanted. �

Remark 3.1.9: Since the case Z/2Z is somewhat degenerate, it would be tempting
to exclude this case from the definition of compatible q.o.a.g’s. However, this seems
rather unreasonable in view of Proposition 3.1.20 below. Indeed, we want the class of
compatible q.o.a.g’s to be stable under quotient by convex subgroups, which would not
be the case if Z/2Z were excluded.

An immediate consequence of Proposition 3.1.8 is the following:

Proposition 3.1.10
The compatible q.o.a.g. (G,-) is an ordered group if and only if every element of G is
o-type.

Proof. If (G,-) is an ordered group, then in particular we must have cl(g) = {g} for all
g ∈ G. It then follows from Proposition 3.1.4 that O = G. Conversely, assume O = G.
Then it follows from Proposition 3.1.4 that - is an order on G and that G has no element
of order 2. By Proposition 3.1.8, it follows that (G,-) is an ordered group.

�

We are now going to investigate O and V in more details and show that they have
remarkable properties.
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3.1.2 Properties of O and V

Set Γ = G/ ∼ and denote by ≤ the order induced by - on Γ. For any γ ∈ Γ, set
Gγ := {g ∈ G | cl(g) ≤ γ} and Gγ := {g ∈ G | cl(g) < γ}

Remark 3.1.11: If - is the q.o. induced by a valuation v, then Γ with the reverse
order of ≤ is isomorphic to v(G). In that case, our definition of Gγ , Gγ coincides with
the definition given in Section 2.2 for valued groups, i.e Gγ = {g ∈ G | v(g) ≥ γ} and
Gγ = {g ∈ G | v(g) > γ}. If (G,≤) is an ordered abelian group then Γ and G are
isomorphic as ordered sets.

The following two lemmas will have important consequences on O and V:

Lemma 3.1.12
If h ∈ V and g / h then g − h ∼ g + h.

Proof. Since h is v-type, we have h - −h - h. Since g / h, we can apply (Q2) to these
inequalities and we get g + h - g − h - g + h. �

Lemma 3.1.13
Let H be an initial segment of G containing O. Then H is a subgroup of G.

Proof. Since 0 is o-type, 0 ∈ O ⊆ H. Let h ∈ H. If h ∈ V, then in particular −h - h,
so −h ∈ H because H is an initial segment of G. If h ∈ O, then −h ∈ O ⊆ H. This
shows that H is closed under taking the inverse, and we are now going to show that it is
closed under addition. Let g, h ∈ H. We can assume h , 0. If g - 0 then (Q2) implies
g + h - h ∈ H hence g + h ∈ H because H is an initial segment of G. Now assume 0 - g.
If −(g + h) < H, then in particular g / −(g + h) (because H is an initial segment of
G). Thus, we can apply (Q2) to the inequality 0 - g and we get −(g + h) - −h ∈ H,
so −(g + h) ∈ H, which is a contradiction. Thus, −(g + h) ∈ H, and since H is closed
under taking the inverse this implies g + h ∈ H. �

We can now give the main properties of O:

Proposition 3.1.14
O is an initial segment and a subgroup of G. In particular, (O,-) is an ordered abelian
group.

Proof. Let h ∈ V∗ and g ∈ O. We want to show that g � h. If h = g were true, then we
would have h ∈ O ∩ V = {0} which is excluded. Therefore, h , g. Since g ∈ O, it follows
from Proposition 3.1.4(2) that g / h. By Lemma 3.1.12, we then have g + h ∼ g − h.
Note that we also have −h ∈ V∗, so by the same argument we have g / −h. Moreover,
Proposition 3.1.4(3) implies 0 - −h. By (Q2), it follows that g - g − h. Assume
h / g − h. We can apply (Q2) to the previous inequality and get g + h - g, so we
have g + h - g - g − h ∼ g + h, which means g ∼ g + h. Since g ∈ O, this contradicts
Proposition 3.1.4(2). Thus, we have g - g− h ∼ h, which is what we wanted. This shows
that O is an initial segment, and by Lemma 3.1.13 it follows that O is a subgroup of G.
By Proposition 3.1.10 (O,-) is then an ordered abelian group. �
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The main property of V∗ is given by the ultrametric inequality satisfied by v-type
elements:

Proposition 3.1.15 (ultrametric inequality for v-type elements)
V∗ is a final segment of G. Moreover, for any g ∈ V∗ and h ∈ G we have
cl(g + h) ≤ max(cl(g), cl(h)). If h � g, then g ∼ g + h.

Proof. The fact that V∗ is a final segment follows directly from Proposition 3.1.14. Take
g ∈ V∗ and h ∈ G. We can assume that h - g: otherwise, we have h ∈ V∗ so we
can exchange the roles of g and h. By Proposition 3.1.14, Gcl(g), Gcl(g) contain O. By
Lemma 3.1.13 it follows that they are subgroups of G. In particular, since g, h ∈ Gcl(g),
we have g + h ∈ Gcl(g), hence g + h - g. If h � g, then we even have h ∈ Gcl(g) but
g ∈ Gcl(g)\Gcl(g), hence g + h ∈ Gcl(g)\Gcl(g), which means g ∼ g + h. �

We can reformulate Proposition 3.1.15 by saying that - behaves like a valuation on
V∗:

Proposition 3.1.16
Set Γv := cl(V∗) and take γ0 ∈ Γ with γ0 < Γv. Let ≤∗ be the reverse order of ≤ on
Γv ∪ {γ0}. Define v on G by:

v(g) =


cl(g) if g ∈ V∗
γ0 if 0 , g ∈ O
∞ if g = 0

Then v : G→ (Γv ∪ {γ0,∞},≤∗) is a valuation and we have g - h⇔ v(g) ≥ v(h) for any
g, h ∈ V∗.

Proof. It suffices to show that v(g+ h) ≥ min(v(g), v(h)) for any g, h ∈ G. If g or h is in
V∗, then this is given by Proposition 3.1.15. If g and h are in O, then this is given by
Proposition 3.1.14. �

As a special case of Proposition 3.1.16 we have a v-type analog of Proposition 3.1.10:

Proposition 3.1.17
The compatible q.o. - is valuational if and only if every element of G is v-type. In that
case, the map cl : G→ Γ with reverse order on Γ and with ∞ := cl(0) is a valuation, and
- is the q.o. induced by this valuation.

3.1.3 Quasi-order induced on a quotient

It is known that if (G,≤) is an ordered abelian group and if H is a convex subgroup,
then ≤ naturally induces an order on the quotient G/H (see [Fuc63]). We now show that
the same is true in the case of compatible q.o.a.g.’s, which will allow us to give a more
elegant formulation of Proposition 3.1.16. We start by describing convex subgroups:
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Proposition 3.1.18
Let H be a convex subgroup of (G,-). Then either H ⊆ O or O ⊆ H. If the latter holds,
then H is an initial segment of G.

Proof. Assume O is not contained in H, so there exists some o-type element g with
g < H. Without loss of generality, we can assume 0 - g. By convexity of H, we have
H � g, which by Proposition 3.1.14 implies that every element of H is o-type. Now
assume O ⊆ H and let us show that H is an initial segment of G. Take h ∈ H and g ∈ G
with g - h. If g ∈ O then g ∈ H by assumption; if g < O, then by Lemma 3.1.4 we have
0 - g - h, hence g ∈ H by convexity of H. This shows that H is an initial segment. �

We will need the following lemma to define a q.o. on quotients:

Proposition 3.1.19
For any g, h, f ∈ G, g - h / −f ⇒ g + f - h+ f .

Proof. Assume g - h / −f holds. If f ∈ V, the claim follows directly from axiom (Q2).
Assume f ∈ O. If h ∈ O, then by Proposition 3.1.14, g ∈ O. By Proposition 3.1.14,
(O,-) satisfies (OG), hence g+f - h+f . Assume that h ∈ V∗. By Proposition 3.1.15, we
have h+ f ∼ h. If g ∈ O, then it follows from Proposition 3.1.14 that g + f - h ∼ h+ f .
If g ∈ V∗, then Proposition 3.1.15 implies g + f ∼ g, hence g + f ∼ g - h ∼ h+ f . In all
cases, we have g + f - h+ f . �

Proposition 3.1.20
Let H be a subgroup of G. Then H is convex in (G,-) if and only if - induces a
compatible q.o. on the quotient G/H. Moreover, the canonical projection π from G to
G/H is a homomorphism of q.o. groups, and for all g ∈ G\H, g is o-type if and only if
π(g) is o-type.

Proof. Proposition 3.1.19 and (Q1) show that - satisfies the condition (∗) of Lemma
2.7.20. If - induces a compatible q.o. on the quotient G/H, Lemma 2.7.20 immediately
implies that H is convex in G. Conversely, if H is convex, then by Lemma 2.7.20, -
induces a q.o. on the quotient G/H which satisfies (Q1). We just have to check that this
q.o. satisfies (Q2). Let g1, g2, g3 ∈ G with g1+H - g2+H / g3+H. There are h1, h2 ∈ H
with g1 +h1 - g2 +h2. Since g2 +H / g3 +H, we cannot have g2 +h2 ∼ g3. Therefore, we
can apply (Q2) to the relation g1 + h1 - g2 + h2, which yields g1 + g3 + h1 - g2 + g3 + h2.
By definition of the induced q.o., this means g1 + g3 +H - g2 + g3 +H. This proves that
(Q2) is satisfied on G/H. It is clear from the definition of the induced q.o. on G/H that
π is a homomorphism of q.o. groups. The last sentence follows from Lemma 2.7.20. �

We can give a formula for the induced q.o.:

Proposition 3.1.21
Let H be a convex subgroup of (G,-). Then the q.o. induced by - on G/H is given by
the following formula: g +H - h+H ⇔ (g − h ∈ H) ∨ (g − h < H ∧ g - h).

51



Lehéricy Gabriel - Thèse de doctorat - 2018

Proof. If g − h ∈ H then g + H = h + H, so clearly g + H - h + H. If g - h, then
clearly by definition of the q.o. induced on G/H we have g +H - h+H. This shows
g + H - h + H ⇐ (g − h ∈ H) ∨ (g − h < H ∧ g - h). Let us show the converse.
Assume g1 + H - g2 + H and g1 − g2 < H holds and let us show g1 - g2. Since
g1 +H - g2 +H, there are h1, h2 ∈ H with g1 + h1 - g2 + h2. Assume first that g2 ∈ H.
Since g1 − g2 < H, we then have g1 < H. By convexity of H, it follows that h1 / g1.
Assume for a contradiction that g2 - g1. We then have g2 - g1 / h1. By (Q2), this
implies g2 + h1 - g1 + h1. By convexity of H, it follows from g2 + h1 - g1 + h1 - g2 + h2
that g1 ∈ H: contradiction. Therefore, we must have g1 - g2. Now assume g2 < H.
By convexity of H, we have g2 + h2 / −h1. By (Q2), g1 + h1 - g2 + h2 then implies
g1 - g2 + h2 − h1. If g2 + h2 − h1 ∼ g2, it immediately follows that g1 - g2. Assume
that g2 + h2 − h1 / g2. Then it follows from Proposition 3.1.19 that g1 − g2 - h2 − h1.
But since g1 − g2 < H, the convexity of H implies g1 − g2 - 0. Since g2 , 0, (CQ2) then
implies g1 - g2.

�

Remark 3.1.22: Proposition 3.1.21 implies in particular that, for any h < H and any
g ∈ G, g - h⇔ g +H - h+H.

As we noted in Section 2.7, a bijective homomorphism of q.o. groups is in general
not an isomorphism. A consequence of this is that there is no equivalent of the funda-
mental homomorphism theorem of groups, i.e a homomorphism of q.o. groups is not
always the product of a projection by an embedding. However, we can show that every
homomorphism is a projection followed by a coarsening:

Proposition 3.1.23
Let (G,-G) and (H,-H) be two compatible q.o. groups, φ : G→ H a homomorphism of
q.o. groups and π the canonical projection from G to G/ kerφ. Then kerφ is convex in
(G,-G), so -G induces a compatible q.o. on G/ kerφ. Moreover, the map:
G/ kerφ→ H, g+kerφ 7→ φ(g) is an injective homomorphism of q.o. groups. If moreover
φ is quasi-order-preserving, then g + kerφ 7→ φ(g) is an embedding of q.o. groups.

Proof. Let g, f ∈ kerφ and h ∈ G with f -G h -G g. Then φ(f) = 0 -H φ(h) -H
φ(g) = 0. By (Q1), it follows that h ∈ kerφ. This proves that kerφ is convex, and
so by Proposition 3.1.20 -G induces a compatible q.o. on G/ kerφ. We know from
general group theory that the map given by the formula ψ(g + kerφ) := φ(g) is a well-
defined injective group homomorphism from G/ kerφ to H. Now let g1, g2 ∈ G such that
g1 + kerφ -G g2 + kerφ. There are h1, h2 ∈ kerφ with g1 + h1 -G g2 + h2. Since φ is a
homomorphism of q.o. groups, we then have φ(g1+h1) -H φ(g2+h2). Since h1, h2 ∈ kerφ,
it follows that φ(g1) -H φ(g2), hence ψ(g1 +H) -H ψ(g2 +H). Now assume that φ is
quasi-order-preserving and assume that ψ(g1 +H) -H ψ(g2 +H) holds. By definition of
ψ, we have φ(g1) -H φ(g2). Since φ is q.o.-preserving, it follows that g1 -G g2, which by
definition of the induced q.o. on the quotient implies g1 + kerφ -G g2 + kerφ. �

Proposition 3.1.20 allows us to reformulate Proposition 3.1.16:
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Proposition 3.1.24
Let H be a convex subgroup of (G,-). The induced q.o on G/H is valuational if and
only if O ⊆ H. In particular, O is the smallest convex subgroup of G such that the
induced q.o on G/O is valuational.

Proof. If O ⊆ H, then it follows from Proposition 3.1.20 that every element of G/H is
v-type. It then follows from Proposition 3.1.17 that - is valuational on G/H. If H  O,
then by Proposition 3.1.20 G/H contains a non-zero o-type element. It then follows from
Proposition 3.1.17 that - is not valuational on G/H. �

Propositions 3.1.14 and 3.1.24 show that (G,-) is an extension of a valued group
by an ordered group. We now define the ordered part of (G,-) as the ordered group
(Go,-) where Go := O, and we define the valued part of (G,-) as the valued group
(Gv, v), where Gv := G/O and v is the valuation corresponding to the q.o induced by -
on Gv. We will now express - with a formula in which the order of its ordered part and
the valuation of its valued part explicitly appear.

Proposition 3.1.25
Let ≤o denote the restriction of - to Go. Then the q.o. - is given by the following
formula for all g, h ∈ G:
g - h⇔ (g, h ∈ Go ∧ g ≤o h) ∨ (h < Go ∧ v(g +Go) ≥ v(h+Go))

Proof. Denote by -∗ the q.o given by the formula g -∗ h⇔ (g, h ∈ Go ∧ g ≤o h) ∨ (h <
Go ∧ v(g +Go) ≥ v(h+Go)). We show that -∗ coincides with -. Assume g - h. Then
g+Go - h+Go holds by definition of the induced q.o on G/Go. If h < Go, then it directly
follows from the definition of -∗ that g -∗ h. If h ∈ Go, then by Proposition 3.1.14 we
must have g ∈ Go. By definition of ≤o, g - h then implies g ≤o h. By definition of -∗,
this implies g -∗ h. Conversely, assume g -∗ h. If g, h ∈ Go, then g ≤o h holds. By
definition of ≤o, this implies g - h. Assume then that (h < Go ∧ v(g +Go) ≥ v(h+Go))
holds. Then it follows from Remark 3.1.22 that g - h. �

3.1.4 Structure theorems

We can summarize previous results into the following theorem which gives the structure
of a compatible q.o.a.g.:

Theorem 3.1.26
Let (G,-) be a quasi-ordered abelian group. Then - is compatible with + if and only if
G admits a subgroup H satisfying the following properties:

(1) H is an initial segment of G.

(2) (H,-) is an ordered group.

(3) There exists a valuation v on G such that v(H) > v(G\H) and g - h⇔ v(g) ≥ v(h)
for every g, h in G\H.
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Proof. We have already showed that, if - is compatible with +, then (1), (2) and (3)
are satisfied with H := O (Propositions 3.1.14 and 3.1.16). Conversely, assume there
exists H satisfying (1), (2) and (3). (Q1) is clearly satisfied, so let us prove (Q2). Let
x - y / z. Assume y ∈ H. Since H is an initial segment, this implies x ∈ H. If z ∈ H,
then since H is an ordered group we have x - y ⇒ x + z - y + z. If z < H, then
v(x), v(y) > v(z) so v(z) = v(x + z) = v(y + z), and since v and - coincide outside of
H this means z ∼ x + z ∼ y + z so in particular x + z - y + z. Assume y < H. Then
x - y implies v(x) ≥ v(y) and z / y implies v(z) , v(y). If v(z) < v(y), then z < H and
v(x+ z) = v(y+ z), hence x+ z ∼ y+ z. If v(y) < v(z), then v(y+ z) = v(y) ≤ v(z+ x),
hence z + x - z + y. In any case, we have x+ z - y + z. �

Remark 3.1.27: As we have seen in Proposition 3.1.24, (1)+(2)+(3) implies:

(3′) The q.o. - induces a valuational q.o. on G/H.

It is tempting to replace (3) by (3′) in Theorem 3.1.26, as (3′) seems to be a more
elegant reformulation of (3). However, condition (3) is in general stronger than (3′), so that
Theorem 3.1.26 becomes false if we replace (3) by (3′). We can construct an example of a
q.o. group satisfying (1), (2) and (3′) but which is not compatible: Take G := (Z/2Z)×Z
with the following q.o: (a, b) - (c, d)⇔ (a = c ∧ b ≤ d) ∨ (a < c), where ≤ is the usual
order of Z. We have: (0×Z,≤) � . . . (1,−n) � · · · � (1,−1) � (1, 0) � · · · � (1, n) � . . . .
Setting H = 0×Z, H satisfies (1) and (2). It is also easy to see that - induces a q.o.
on G/H, which is the q.o. 0 � 1, so it is valuational. Therefore, (G,-) satisfies (3′).
However, - cannot be compatible: the set of o-type elements is G\{(1, 0)} which is clearly
not a group, thus contradicting Proposition 3.1.14. We can also give an explicit example
of axiom (Q2) failing: take x := (0, 0), y := (1, 0) and z := (1, 1). We have x - y / z but
y + z = (0, 1) � x+ z = (1, 1).

However, we can replace (3) by (3′) plus an extra condition, which gives us a second
version of the structure theorem:

Theorem 3.1.28
Let (G,-) be a q.o.a.g. Then - is compatible with + if and only if G admits a subgroup
H satisfying the following properties:

(1) H is an initial segment of G.

(2) (H,-) is an ordered abelian group.

(3′) The q.o. - induces a valuational q.o. on G/H.

(4) For any g, h ∈ G, g < H and g − h ∈ H implies g ∼ h.

Proof. Assume that - is compatible and set H := O. (1) and (2) follow from Theorem
3.1.26. (3′) follows from Proposition 3.1.24. Let us prove (4). Let g ∈ V∗ and h ∈ G
with g − h ∈ H. Then by Proposition 3.1.14, we have h − g � g. It then follows from
Proposition 3.1.15 that g ∼ g + h− g = h, which proves (4).
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Conversely, assume that (1), (2), (3′) and (4) hold. We just have to show that (3) of
Theorem 3.1.26 holds. By (3′), we know that the q.o - on G/H is valuational, and we
denote by v : G/H → Γ ∪ {∞} the corresponding valuation. We lift v to a valuation w
on G as follows: add a point γ0 to Γ such that Γ < γ0 <∞. For any g ∈ G define w(g)
as follows:

w(g) =


v(g +H) if g < H

γ0 if 0 , g ∈ H
∞ if g = 0

It is clear from its definition that w is a valuation (because v is a valuation and H is a
subgroup of G). Take g, h < H. If g - h, then g+H - h+H hence v(g+H) ≥ v(h+H)
hence w(g) ≥ w(h). Conversely, if w(g) ≥ w(h), then by definition of w we must have
h+H - g+H. By definition of the induced q.o., there are a, b ∈ H with h+a - g+b.Since
g, h < H, it follows from (4) that h+ a ∼ h and g + b ∼ g, hence g - h. This shows that
(3) of Theorem 3.1.26 holds. �

We can reformulate Theorem 3.1.28 into the language of exact sequences: a compatible
q.o.a.g. is an extension of a valued group by an ordered group:

Theorem 3.1.29
Let (G,-) be an abelian quasi-ordered group. Then - is compatible with + if and only
if there exists an exact sequence 0→ Go

ι→ G
π→ F → 0 such that there exists a group

order ≤o on Go and a valuation v on F such that for any g, h ∈ G
(†) g - h⇔ (g, h ∈ ι(Go) ∧ ι−1(g) ≤o ι−1(h)) ∨ (h < ι(Go) ∧ v(π(g)) ≥ v(π(h))).

Proof. One direction is given by Proposition 3.1.25. For the other direction, assume that
such an exact sequence as above exists. We use Theorem 3.1.28. Set H := ι(Go). It
follows directly from formula (†) that (1) and (2) are satisfied. If g < H and h ∈ G are
such that g−h ∈ H, Then we have v(π(g−h)) > v(π(g)). This implies v(π(g)) = v(π(h)).
By formula (†), this implies g ∼ h. This shows (4). Now let us show (3′). By assumption,
if we set π(g+H) := π(g), then π is a group isomorphism from G/H to F . It follows that
v(g+H) := v(π(g)) defines a valuation on G/H. Denote by - the relation defined on G/H
by g+H - h+H ⇔ ∃a, b ∈ H(g+a - h+b). To prove (3′), we just have to show that - is
the q.o. induced by v. Assume that g+a - h+b. If h+b < H, then it directly follows from
formula (†) that v(h+H) ≤ v(g +H). If h+ b ∈ H, then formula (†) implies g + a ∈ H,
hence v(h + H) = v(g + H) = ∞, hence v(h + H) ≤ v(g + H). Conversely, assume
v(h+H) ≤ v(g +H). If h < H, then it immediately follows from formula (†) that g - h.
If h ∈ H, then v(h+H) =∞, hence v(g+H) =∞, hence g ∈ H. Choose a := h− g and
we have g+a - h. This proves that v(h+H) ≤ v(g+H)⇔ ∃a, b ∈ H(g+a - h+ b). �

3.2 Compatible valuations and Baer-Krull
A motivation for the study of quasi-ordered groups was to find q.o. group analogs of
Theorems 2.7.9 and 2.3.1. We now tackle this question. It is easy to obtain a group
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analog of Theorem 2.7.9:

Lemma 3.2.1
Assume (G,-) is a compatible q.o.a.g. and let H ⊆ G. Then H is convex in (G,-) if
and only if {g ∈ H | 0 - g} is convex in (G,-).

Proof. It is clear that, if H is convex, then {g ∈ H | 0 - g} is also convex. Conversely,
assume that {g ∈ H | 0 - g} is convex and let g, h ∈ H and f ∈ G with g - f - h.
If 0 - f - h then by assumption we have f ∈ H. Assume that g - f - 0. Then by
Proposition 3.1.4, we have f, g ∈ O, and since (O,≤) is an ordered group it follows that
0 - −f - −g, hence by assumption −f ∈ H. �

Theorem 3.2.2
Let (G,-) be a compatible q.o.a.g. and v : G → Γ ∪ {∞} a valuation. The following
statements are equivalent:

(1) For all γ ∈ Γ, Gγ is convex in (G,-).

(2) For all γ ∈ Γ, Gγ is convex in (G,-).

(3) For all γ ∈ Γ, - induces a compatible q.o. -γ on Gγ/Gγ .

(4) v is compatible with -.

Moreover, - is valuational (respectively, an order) if and only if for all γ ∈ Γ, -γ is
valuational (respectively, an order).

Proof. (1)⇔(2) is given by Lemma 2.7.18. (2)⇔(4) follows from Lemma 3.2.1 and from
Lemma 2.7.19. (2)⇒(3) is given by Proposition 3.1.20. If (3) holds, then by Proposition
3.1.20, Gγ is convex in (Gγ ,-) for all γ ∈ Γ. It then follows from Lemma 2.7.18 that Gγ
is convex in (G,-) for all γ ∈ Γ, hence (2). Finally, the last statement follows from the
fact that the map π in Proposition 3.1.20 preserves the type of elements, and by then
applying Propositions 3.1.10 and 3.1.17. �

Theorem 3.2.2 has two immediate corollaries:

Corollary 3.2.3
Let (G,≤) be an ordered abelian group and v : G→ Γ ∪ {∞} a valuation. The following
statements are equivalent:

(1) For all γ ∈ Γ, Gγ is convex in (G,≤).

(2) For all γ ∈ Γ, Gγ is convex in (G,≤).

(3) For all γ ∈ Γ, ≤ induces a group order on Gγ/Gγ .

(4) v is compatible with ≤.
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Corollary 3.2.4
Let (G,w) be a valued group and v : G → Γ ∪ {∞} another valuation. Denote by -w
the q.o. induced by w. The following statements are equivalent:

(1) For all γ ∈ Γ, Gγ is convex in (G,-w).

(2) For all γ ∈ Γ, Gγ is convex in (G,-w).

(3) For all γ ∈ Γ, w induces a valuation on Gγ/Gγ .

(4) v is a coarsening of w.

However, the Baer-Krull Theorem cannot hold for compatible q.o.a.g.’s. The reason
for this is that the classical Baer-Krull theorem (Theorem 2.3.1) uses the fact that any
order on the residue field can be lifted to an order of the original field. This situation is
not transposable to the case of compatible q.o.a.g.’s. Indeed, Proposition 3.1.14 implies in
particular that the class of compatible q.o.’s is not stable under lifting. This is illustrated
by the following example:

Example 3.2.5
Take G := Z × Z. Define v : G → {1, 2,∞} by v(g) = 1 if g < {0} × Z, v(g) = 2 if
g ∈ {0} × Z\{(0, 0)} and v((0, 0)) = ∞. We have B1 := G1/G1 � Z � G2/G2 =: B2.
Now let -1,-2 denote the same q.o., namely the q.o. on Z of example 3.1.2(b). Then
no lifting of (-1,-2) to G can be a compatible q.o. Indeed, assume that (-1,-2) has a
lifting - and that - is compatible. In particular, - induces the q.o. -2 on G2/G2. It
then follows from Theorem 3.2.2 that G2 is convex in (G,-). Moreover, because the map
π from Proposition 3.1.20 preserves the type of elements, both (5, 0) and (0, 5) are o-type
and (0, 1) is v-type. By Proposition 3.1.14, we must have (5, 0) � (0, 1). Because -1 is
the q.o. induced by - on B1, this implies 5 -1 0. This contradicts the definition of -1.

This shows that compatible q.o.’s are not appropriate for a Baer-Krull theorem.
However, we will see in Chapter 4 that C-q.o’s are suitable; see Section 4.2.2.

We finish this section by giving a consequence of Theorem 3.2.2 which will be useful
for asymptotic couples in Section 5.4.

Proposition 3.2.6
Let (G,≤) be an ordered group and v a Z-module valuation compatible with ≤. Let
(Ψ, (Cλ)λ∈Ψ) be the skeleton of (G, v). The following holds:

(1) For any λ ∈ Ψ, ≤ induces an order ≤λ on Cλ.

(2) Denote by (H,≤H) the lexicographic product of the family (Ĉλ,≤λ)λ∈Ψ, and let w be
the valuation defined on H by w(g) = min supp(g). Then any embedding of valued
groups φ : (G, v) ↪→ (H,w) as in Theorem 2.2.9 is also an embedding of ordered
groups (G,≤) ↪→ (H,≤H).
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Proof. It follows from Corollary 3.2.3 that ≤ induces an order on Cλ. Now let us prove
(2). Denote by P the positive cone of (G,≤), by Pλ the positive cone of (Cλ,≤λ) and
by PH the positive cone of ≤H . We just have to prove that φ(P ) ⊆ PH . Take g ∈ G.
Set λ := v(g). By condition (1) of Theorem 2.2.9, we have w(φ(g)) = λ. Because of
property (2) of 2.2.9, we have φ(g) + Hλ = g + Gλ. Because Pλ is the order induced
by P on Cλ, we have g ∈ P ⇔ g + Gλ ∈ Pλ. Moreover, by definition of PH , we have
φ(g) ∈ PH ⇔ φ(g) + Hλ ∈ Pλ. It follows that g ∈ P ⇔ φ(g) ∈ PH , which is what we
wanted. �

3.3 Products of compatible q.o.’s
In the theory of ordered abelian groups, there is a natural notion of product, namely the
lexicographic product (see Section 2.2). The goal of this section is to develop a similar
notion for compatible q.o.a.g.’s. We first introduce the notion of compatible product,
and we then use this notion to prove a generalization of Hahn’s embedding theorem for
compatible q.o.a.g.’s. We then show that the compatible product of an ordered group
by a valued group preserves elementary equivalence. For any compatible q.o.a.g. (G,-),
(Go,-) and (Gv,-) respectively denote the ordered part and the valued part of (G,-).

3.3.1 The compatible product

In Chapter 2, we recalled the definition of the lexicographic product of a family of ordered
groups, and we introduced the notion of valuational product of q.o. groups. This allows
us to define a notion of product for compatible q.o.a.g.’s. Let (Bγ ,-γ)γ∈Γ be an ordered
family of compatible q.o.a.g.’s. Let G := Hγ∈ΓBγ , let (Go,≤o) be the lexicographic
product of the family (Bo

γ ,-γ)γ∈Γ and set V∗ := G\Go. For each γ ∈ Γ, the q.o. -γ
induces a valuational q.o. on Bv

γ = Bγ/Bo
γ by Proposition 3.1.24. Let (Gv,-val) be the

valuational product of the family (Bv
γ ,-γ)γ∈Γ. Note that G/Go is canonically isomorphic

to Gv via the isomorphism ψ : (gγ)γ +Go 7→ (gγ +Bo
γ)γ .

Definition 3.3.1
The compatible product of the family (Bγ ,-γ)γ∈Γ is the compatible q.o.a.g. (G,-),
where - is defined by the following formula:
g - h⇔ (g, h ∈ Go ∧ g ≤o h) ∨ (h ∈ V∗ ∧ ψ(g +Go) -val ψ(h+Go)).

The fact that - is compatible follows directly from Theorem 3.1.29. We denote the
compatible product of the family (Bγ ,-γ)γ∈Γ by Hγ∈Γ(Bγ ,-γ). If Γ is finite with elements
γ1 < γ2 < · · · < γn, then we denote it by (Bγ1 ,-γ1)× (Bγ2 ,-γ2)× · · · × (Bγn ,-γn).

One particular case of compatible product is the case of the product of an ordered
group by a valued group. This gives us a way of constructing compatible q.o.a.g.’s from
ordered and valued groups. In particular, we have the following:

Proposition 3.3.2
Let (G,≤) be an ordered abelian group and (F, v) a valued group. Then there exists a
compatible q.o.a.g. whose ordered part is (G,≤) and whose valued part is (F, v).
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Proof. Just take the compatible product (F,-val)× (G,≤), where -val is the q.o. induced
by v. �

In view of Theorem 3.1.28, it is natural to ask whether every compatible q.o.a.g. can
be obtained as the product of an ordered group by a valued group. However, Example
3.1.2(b) shows that it is not the case: Go = 5Z is not a direct factor of G = Z, so (G,-)
is not the compatible product of Go by G/Go. Fortunately, we have the following:

Proposition 3.3.3
Let (G,-) be a compatible q.o.a.g. If Go is a direct factor of G with complement
F , then (F,-) is canonically isomorphic to the valued part of (G,-) and we have
(G,-) = (F,-)× (Go,-). In other words, (G,-) is the compatible product of its ordered
part by its valued part.

Proof. It follows directly from Proposition 3.1.25 and from the definition of the compatible
product. �

Proposition 3.3.2 shows that if (G,-) is a compatible q.o.a.g, then the valuation
appearing in the valued part of G can a priori be any valuation, in particular it does
not have to be a Z-module valuation. However, it can be interesting to restrict our
attention to such valuations. Consider the following family of axioms indexed by n ∈N:
(VMn) ∀g,−g - g ⇒ g - ng (“VM” stands for “valued module”). This family of
axioms gives an axiomatization of the class of compatible q.o.a.g.’s whose valuation on
its valuational part is a Z-module valuation. If (G,-) is such a compatible q.o.a.g., then
Go is pure in G, from which we get the following result:

Proposition 3.3.4
Let (G,-) be a compatible q.o.a.g. satisfying the axiom (VMn) for every n ∈N. Assume
that G is divisible. Then (G,-) is the compatible product of its ordered part by its
valued part.

Proof. Because of (VMn), Go is pure in G. Since G is divisible, Go is then a direct factor
of G. The result then follows from Proposition 3.3.3. �

3.3.2 Hahn’s embedding theorem

We now want to generalize Hahn’s embedding theorem (Theorem 2.2.6) to compatible
q.o.a.g.’s. This implies defining a notion of archimedeanity for q.o. groups. To do this,
we will associate a valuational q.o. -arch to each compatible q.o. -, which we will call
the archimedean q.o. associated to -.

Let (G,-) be a compatible q.o.a.g. Consider the relation l defined as follows: we
say that g l h if and only if there is n,m ∈ Z\{0} such that 0 - ng - mh. We have the
following:

Lemma 3.3.5
The relation l defines a valuational q.o. on Go.

59



Lehéricy Gabriel - Thèse de doctorat - 2018

Proof. l is clearly reflexive, let us show transitivity. Assume f l g l h. There are
n,m, k, l with 0 - nf - mg and 0 - kg - lh. It follows that 0 - |n||f | - |m||g| and
0 - |k||g| - |l||h|. Since - is an order on Go these relations imply 0 - |n||f | - |m||g| -
|km||g| - |ml||h|, so either 0 - nf - mlh or 0 - nf - −mlh holds, hence f l h. This
proves that l is a q.o. on Go. Now let us prove that l is valuational. If g l 0 then
0 - ng - 0 holds for some n , 0 which implies ng = 0 by (Q1), and since Go is an
ordered abelian group it is torsion-free, hence g = 0. Thus, we have 0 � g for every
g ∈ Go with g , 0. Clearly, g l −g l g holds for every g. Now assume g l h and take
n,m with 0 - ng - mh. We have 0 - |n||g| - |m||h|, which by compatibility implies
|n||g + h| - |n + m||h| hence g + h l h. This proves that the ultrametric inequality
holds. �

However, the relation l is not transitive in general. Indeed, consider the following
example: set G := Z2 and let v : G→ {1, 2, 3,∞} be the valuation defined as follows:

v(n,m) =


1 if p - m
2 if 0 , n ∧ p | m
3 if n = 0 ∧ p | m , 0
∞ if n = m = 0

Now let - be the q.o induced by v. Let f := (0, p), g := (1, p) and h := (0, 1). We
have p.h ∼ f , hence h l f . Moreover, g - h, so g l h. However, for every n,m ∈ Z\{0}
we have mf ∼ f � g ∼ ng, so g l f does not hold. To make l transitive, we define the
relation -arch as follows: we say that g -arch h if there exists r ∈N and x1, . . . , xr ∈ G
such that g l x1 l x2 l . . . l xr l h. Note that -arch is the same as l for ordered groups.
In order to prove that -arch is a valuational q.o, we need the following lemma:

Lemma 3.3.6
Let - be a compatible q.o., g ∈ V∗ and let -∗ be a coarsening of -. Then for any h ∈ G,
h -∗ g implies g + h -∗ g.

Proof. Assume h -∗ g and g �∗ g+h. Since -∗ is a coarsening of -, this implies g � g+h.
Since g is v-type, g+h must also be v-type by Proposition 3.1.14, and it then follows from
Proposition 3.1.15 that g + h ∼ h. Since -∗ is a coarsening of -, this implies h ∼∗ g + h.
We thus have h -∗ g �∗ g + h ∼∗ h, which is a contradiction. �

Proposition 3.3.7
Let (G,-) be a torsion-free compatible q.o.a.g. The relation -arch is a q.o on G. Moreover,
it is the finest Z-module-valuational coarsening of -.

Proof. The fact that -arch is transitive and is a coarsening of - is clear from its definition.
It is also clear that g ∼arch ng for all g ∈ G and n ∈ Z\{0}. Now let us show that -arch is
valuational. Note that for any g ∈ G, gl0 implies g = 0: indeed, if gl0 then there exists
n , 0 with 0 - ng - 0, which by (Q1) implies ng = 0 and since G is torsion-free it follows
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that g = 0. By definition of -arch, it then follows that g -arch 0 implies g = 0, so we have
0 �arch g whenever g , 0. Now let us show that -arch satisfies the ultrametric inequality.
Let g, h ∈ G with g -arch h. If h ∈ V∗, it follows from Lemma 3.3.6 that g + h -arch h,
so assume h ∈ Go. If g ∈ Go, it follows from Lemma 3.3.5 that g + h -arch h. Assume
then that g ∈ V∗. By Proposition 3.1.14 we then have h � g, hence by Proposition
3.1.15 g + h ∼ g, and since -arch is a coarsening of - this implies g + h ∼arch g, hence
g + h -arch h. This proves that -arch is valuational.

Now let -∗ be another coarsening of - such that -∗ is Z-module valuational. We show
that -∗ is a coarsening of -arch. Let g, h ∈ G with g -arch h. We first assume that g l h.
There is n,m with 0 - ng - mh. Since -∗ is a coarsening of -, this implies ng -∗ mh.
Since -∗ is Z-module-valuational, we have ng ∼∗ g and mh ∼∗ h, hence g -∗ h. Now for
the general case, we know that there are x1, . . . , xr with g l x1 l . . . l xr l h. By what
we just proved this implies g -∗ x1 -∗ . . . -∗ xr -∗ h, which by transitivity of -∗ implies
g -∗ h.This shows that -∗ is a coarsening of -arch. �

The valuation varch corresponding to -arch is called the archimedean valuation
associated to -. (G,-) is an archimedean compatible q.o.a.g. if varch is the trivial
valuation on G. Because -arch is a coarsening of -, varch is compatible with -. It follows
from Theorem 3.2.2 that, for every γ ∈ Γ, - induces a compatible q.o. -γ on Bγ . Note
that (Bγ ,-γ) is archimedean.

We can now state a Hahn’s embedding theorem for compatible q.o.a.g’s:

Theorem 3.3.8
Let (G,-) be a torsion-free divisible compatible q.o.a.g. and let varch be the archimedean
valuation associated to -. Let (Γ, (Bγ)γ∈Γ) be the skeleton of (G, varch) and let -γ be
the q.o induced by - on Bγ . Then there exists an embedding of quasi-ordered groups
from (G,-) into the compatible Hahn product Hγ∈Γ(Bγ ,-γ)γ .

Proof. Let (H,-∗) denote the compatible product of the family (Bγ ,-γ)γ∈Γ and let v
denote the usual valuation on H (i.e v(h) = min supp(h)). We denote by (F,-val) the
valuational product of the family (Bγ/Bo

γ)γ∈Γ. We take a group embedding φ : G→ H

as given by Theorem 2.2.9 (note that, since G is divisible, B̂γ = Bγ). For g ∈ G we
denote by gγ the coefficient of φ(g) at γ. We need the following claims:

Claim 1: For any γ ∈ Γ and g ∈ G with varch(g) = γ, g is v-type if and only if g +Gγ
is v-type.

Proof. It follows from Proposition 3.1.20. �

Claim 2: If h ∈ G is o-type and δ = varch(h), then for every γ > δ, Bo
γ = Bγ .

Proof. Let g ∈ G with varch(g) = γ > δ. Since varch(g) > varch(h) and since -arch is a
coarsening of -, we must have g - h. By Proposition 3.1.14, it follows that g is o-type.
By Claim 1, g +Gγ is then o-type. This shows that every element of Bγ is o-type. �

Claim 3: For any g ∈ G and δ := varch(g), we have min supp((gγ + Bo
γ)γ∈Γ) ≥ δ. If

moreover g < Go, then min supp((gγ +Bo
γ)γ∈Γ) = δ
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Proof. By condition (1) of Theorem 2.2.9, we have δ = v(φ(g)). It then follows from
the definition of v and δ that gε = 0 for every ε < δ, hence gε + Bo

ε = 0 for every
ε < δ hence min supp((gγ + Bo

γ)γ∈Γ) ≥ δ. Now if g < Go, then by Claim 1 g + Gδ is
v-type, and by condition (2) of Theorem 2.2.9 we have gδ = g +Gδ, hence gδ < Bo

δ hence
δ ∈ supp((gγ +Bo

γ)γ∈Γ), which proves δ = min supp((gγ +Bo
γ)γ∈Γ). �

Now let us show the theorem. Take g, h ∈ G and set α := varch(g) = v(φ(g)) and
β := varch(h) = v(φ(h)). We want to show that g - h⇔ φ(g) -∗ φ(h). Without loss of
generality, we assume g , h. We first assume that g - h and we show that φ(g) -∗ φ(h).
Note that g - h implies α ≥ β by Proposition 3.3.7. We use the formula of Proposition
3.1.25. We first consider the case h ∈ Go, which implies g ∈ Go by Proposition 3.1.14.
Since g, h are o-type, it follows from Claim 1 and from condition (2) of Theorem 2.2.9 that
gα and hβ are o-type. Moreover, it follows from Claim 2 that Bo

ε = Bε for every ε > β. It
follows that gε, hε ∈ Bo

ε for every ε ≥ β. Since varch(g), varch(h) ≥ β, this implies that φ(g)
and φ(h) both lie in Ho = Hγ∈ΓB

o
γ . Now set ε := varch(g − h) = v(φ(g)− φ(h)). Since

g - h ∈ Go, we have 0 - h− g, hence 0 -ε (h− g) +Gε. It then follows from condition (2)
of 2.2.9 that 0 - hε − gε, and since gε, hε ∈ Bo

ε this implies gε -ε hε. By definition of -∗
on Ho, this implies φ(g) -∗ φ(h). Now consider the case where h < Go ∧ g+Go - h+Go.
It follows from Claim 1 that hβ is v-type, hence φ(h) < Ho. Now note that gβ - hβ.
Indeed, if α > β, then gβ = 0. Since hβ is v-type, we have 0 -β hβ. If β = α, then
we have gβ = g + Gβ and hβ = h + Gβ. Now g - h implies g + Gβ -β h + Gβ, hence
gβ - hβ. This in turn implies gβ + Bo

β - hβ + Bo
β. Moreover, Claim 3 implies that

β = min(min supp((hγ + Bo
γ)γ∈Γ),min supp((gγ + Bo

γ)γ∈Γ)). It then follows from the
definition of -val that ((gγ + Bo

γ)γ∈Γ) -val ((hγ + Bo
γ)γ∈Γ), which by definition of -∗

implies φ(g) -∗ φ(h).
This shows g - h⇒ φ(g) -∗ φ(h), let us show the converse. Assume that φ(g) -∗ φ(h)

holds and let us show that g - h. Note that if β < α, then since varch is a coarsening
of - we have g � h, so we can assume β ≥ α. We can also assume g , h. We first
consider the case φ(h) ∈ Ho, which implies φ(g) ∈ Ho by Proposition 3.1.14. Since -∗
is an order on Ho and since g , h, we have φ(g) �∗ φ(h). By definition of -∗ on Ho,
we have gγ �γ hγ for γ := v(φ(g)− φ(h)). Since hγ , gγ ∈ Bo

γ , this implies 0 �γ (h− g)γ .
Since γ = v(φ(g)− φ(h)), we have (h− g)γ = (h− g) +Gγ by condition (2) of Theorem
2.2.9, hence 0 �γ (h− g) +Gγ . By Remark 3.1.22, this implies 0 � h− g. By Claim 1,
h− g is o-type, so the previous inequality implies g - h. Now assume that φ(h) < Ho. By
definition of -∗, this implies (gγ +Bo

γ)γ∈Γ -val (hγ +Bo
γ)γ∈Γ. By definition of -val, this

implies min(supp((hγ +Bo
γ)γ∈Γ)) ≤ min(supp((gγ +Bo

γ)γ∈Γ)). By Claim 3, this implies
β ≤ α, hence β = α = min(min(supp((hγ + Bo

γ)γ∈Γ)),min(supp((gγ + Bo
γ)γ∈Γ)))). The

definition of -val then also implies gβ +Bo
β -β hβ +Bo

β. Because φ(h) < Ho, it follows
from Claim 1 that hβ < Bo

β . By Remark 3.1.22, gβ +Bo
β -β hβ +Bo

β then implies gβ - hβ .
Since β = varch(g) = varch(h), condition (2) of Theorem 2.2.9 implies gβ = g +Gβ and
hβ = h + Gβ, hence g + Gβ -β h + Gβ. This implies g - h by Remark 3.1.22. This
finishes the proof.

�
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3.3.3 Elementary equivalence and products

In view of Theorem 3.1.28, it is natural to ask whether elementary equivalence of two
compatible q.o.a.g.’s is equivalent to the elementary equivalence of their respective ordered
parts and the elementary equivalence of their valued parts. This is the object of this
subsection. We first show that one implication is always true : if two compatible q.o.a.g.’s
are elementarily equivalent, then so are their ordered parts and so are their valued parts
(Proposition 3.3.10). The converse fails in general (see example 3.3.11), but we show then
that it holds for groups which are obtained as the compatible product of their ordered
parts by their valued parts. In other words, we show that the compatible product of
ordered groups by valued groups preserves elementary equivalence (Theorem 3.3.13).

We let L denote the language of quasi-ordered groups: L = {0,+,−,-} (− is
interpreted as a unary relation). Note that the atomic formulas are all formulas of the
form P (x̄) - Q(x̄) or P (x̄) = 0, where P (x̄), Q(x̄) are expressions of the form ∑k

i=1 nixi
with n1, . . . , nk ∈ Z. Note also that for any compatible q.o.a.g. (G,-), Go is definable
in G by the formula x = 0 ∨ −x / x, which we will thus abbreviate as the formula
x ∈ Go. Finally, note that for any term P (x̄) and for every tuples ḡ, h̄ ⊆ G we have
P (ḡ + h̄) = P (ḡ) + P (h̄) and P (ḡ +Go) = P (ḡ) +Go.

Lemma 3.3.9
Let φ(x̄) be a formula of L. Then there exists two formulas φo(x̄), φv(x̄) in L, each of
the same arity as φ, such that the following holds for any compatible q.o.a.g. (G,-):

(i) For any ḡo ⊆ Go, Go � φ(ḡo) if and only if G � φo(ḡo)

(ii) For any ḡv ⊆ Gv, Gv � φ(ḡv) if and only if for all ḡ ⊆ G, ḡ +Go = ḡv ⇒ G � φv(ḡ)
if and only if there exists ḡ ⊆ G with ḡ +Go = ḡv and G � φv(ḡ).

Proof. For (i): write φ in prenex form: φ(x̄) ≡ Q1y1 . . . Qnynψ(ȳ, x̄), where each Qi
is a quantifier and ψ is quantifier-free. Since Go is definable in G (by the formula
x = 0 ∨ −x / x), we can define the formula φo(x̄) ≡ Q1y1 ∈ Go . . . Qnyn ∈ Goψ(ȳ, x̄),
and it is then easy to see that φo has the desired property.

For (ii): We proceed by induction on φ. Assume first that φ is atomic. If φ has the
form P (x̄) = 0, then define φv(x̄) ≡ P (x̄) ∈ Go. Now assume that φ(x̄) ≡ P (x̄) - Q(x̄)
and define φv(x̄) as (P (x̄) ∈ Go ∧ Q(x̄) ∈ Go) ∨ (Q(x̄) < Go ∧ φ(x̄)). Assume that
Gv � φ(ḡv) and take ḡ ⊆ G with ḡ + Go = ḡv. We have Gv � P (ḡv) - Q(ḡv). If
Q(ḡv) = 0, then since - is valuational on Gv we must have P (ḡv) = 0, hence G �
P (ḡ) ∈ Go ∧ Q(ḡ) ∈ Go. If Q(ḡv) , 0, then Remark 3.1.22 implies that P (ḡ) - Q(ḡ).
This shows that G � φv(ḡ). Conversely, assume that there exists a ḡ ⊆ G such that
ḡ +Go = ḡv and G � φv(ḡ). If G � (P (ḡ) ∈ Go ∧Q(ḡ) ∈ Go) then P (ḡv) = Q(ḡv) = 0, so
in particular Gv � P (ḡv) - Q(ḡv). If G � Q(ḡ) < Go ∧ φ(ḡ), then Remark 3.1.22 implies
that Gv � P (ḡv) - Q(ḡv). This shows that Gv � φ(ḡv) and concludes the case where φ is
atomic. Assume now that φ ≡ ¬ψ and set φv :≡ ¬ψv. If Gv � φ(ḡv), then Gv 2 ψ(ḡv),
so by induction hypothesis we have G 2 ψv(ḡ) for all ḡ ⊆ G with ḡ + Go = ḡv, hence
G � φv(ḡ). Conversely, if there is ḡ ⊆ G with ḡ +Go = ḡv and G � φv(ḡ), then G 2 ψv(ḡ)

63



Lehéricy Gabriel - Thèse de doctorat - 2018

which by induction hypothesis means Gv 2 ψ(ḡv) hence Gv � φ(ḡv). If φ ≡ φ1 ∧ φ2, one
can easily show that φv :≡ φv1 ∧ φv2 satisfies the desired property and if φ ≡ ∃yψ(y, x̄), it
is also easy to see that φv ≡ ∃yψv(y, x̄) is suitable. �

Proposition 3.3.10
Let (G1,-1) and (G2,-2) be two compatible q.o.a.g.’s such that
(G1, 0,+,−,-1) ≡ (G2, 0,+,−,-2). Then we have (Go1, 0,+,−,-1) ≡ (Go2, 0,+,−,-2)
and (Gv1, 0,+,−,-1) ≡ (Gv2, 0,+,−,-2).

Proof. Assume that G1 ≡ G2 holds and let φ be a sentence of L. Take φo, φv as in
Lemma 3.3.9. If Go1 � φ, then G1 � φo, hence by assumption G2 � φo, hence by choice of
φo: Go2 � φ. We could show similarly that Gv1 � φ implies Gv2 � φ, hence Go1 ≡ Go2 and
Gv1 ≡ Gv2. �

The next example shows that the converse of Proposition 3.3.10 is false in general:

Example 3.3.11
Take G1 := Z with ordered part Go1 := 5Z (with the usual order ≤) and valued part
H1 := Z/5Z equipped with the trivial valuation -. Now take (G2,-2) := (H1,-)×(Go1,≤)
(compatible product). Since G2 has torsion and G1 does not, it is clear that G1 and G2
are not elementarily equivalent.

However, the next Lemma shows that the converse of Proposition 3.3.10 is true if
we restrict ourselves to compatible q.o.a.g.’s which are obtained as the product of their
ordered part by their valued part (which is not the case of G1 in example 3.3.11):

Lemma 3.3.12
Let φ(x̄) be a formula of L. Then there is n ∈N such that there are 2n formulas
φo1(x̄), . . . , φon(x̄), φv1(x̄), . . . , φvn(x̄), each having the same arity as φ, such that the following
holds:

For any ordered abelian group (Go,-) and any valuationally quasi-ordered group
(Gv,-), for any ḡ = ḡo + ḡv in (G,-) := (Gv,-)× (Go,-), we have: G � φ(ḡ) if and only
if there exists i ∈ {1, . . . , n} such that Go � φoi (ḡo) and Gv � φvi (ḡv).

Proof. We identify Gv with G/Go. Note that the q.o induced by - on G/Go coincides with
the q.o of Gv. We proceed by induction on φ. We first assume that φ is an atomic formula.
If φ is of the form P (x̄) = 0, set n = 1 and φo1 ≡ φv1 ≡ φ. Assume that φ is of the form
P (x̄) - Q(x̄). Set n = 2 and define φo1(x̄) :≡ (x̄ = x̄), φv1(x̄) :≡ (Q(x̄) , 0∧φ(x̄)), φo2 :≡ φ
and φv2(x̄) :≡ (Q(x̄) = P (x̄) = 0). We must check that these formulas satisfy the desired
condition. Note that for any Go, Gv, ḡ as above, we have P (ḡ) = P (ḡo) + P (ḡv) with
P (ḡo) ∈ Go and P (ḡv) ∈ Gv, and in particular we have P (ḡ)+Go = P (ḡv) and P (ḡ) ∈ Go
if and only if P (ḡv) = 0. With this remark in mind, it follows directly from Proposition
3.1.25 that the formulas φo1, φo2, φv1, φv2 satisfy the condition we want. This settles the
case where φ is atomic. If φ ≡ ψ ∨ χ, and if ψo1, . . . , ψok, ψv1 , . . . , ψvk, χo1, . . . , χol , χv1, . . . , χvl
are the desired formulas for ψ and χ, we simply set n := k + l, φoi :≡ ψoi , φ

v
i :≡ ψvi for

1 ≤ i ≤ k and φoi :≡ χoi , φ
v
i :≡ χvi for k < i ≤ n. Now assume that φ ≡ ∃yψ(y, x̄) and
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let ψo1, . . . , ψok, ψv1 , . . . , ψvk be the desired formulas for ψ. Define n := k, φoi :≡ ∃yψoi (y, x̄)
and φvi :≡ ∃yψvi (y, x̄) for every i ∈ {1, . . . , n}. If G � φ(ḡ), then there is h ∈ G with
G � ψ(h, ḡ), which implies by induction hypothesis that there is i with Go � ψoi (ho, ḡo)
and Gv � ψvi (hv, ḡv), hence Go � φoi (ḡo) and Gv � φvi (ḡv). Conversely, if we assume that
Go � φoi (ḡo) and Gv � φvi (ḡv), then there is some ho ∈ Go and hv ∈ Gv with Go � ψoi (ho, ḡo)
and Gv � ψvi (hv, ḡv), and by induction hypothesis we then have G � ψ(ho + hv, ḡ) hence
G � φ(ḡ). This shows that the formulas φo1, . . . , φon, φv1, . . . , φvn have the desired property.

Now we just have to consider the case φ ≡ ¬ψ. Let ψo1, . . . , ψok, ψv1 , . . . , ψvk be given.
Let P := P({1, . . . , k}) denote the power set of {1, . . . , k}. For any I ∈ P , we define
φoI , φ

v
I as follows: φoI ≡

∧
i∈I ¬ψoi and φvI ≡

∧
i<I ¬ψvi . Now let us check that the formulas

(φoI)I∈P and (φvI)I∈P satisfy the desired property. Assume that G � φ(ḡ), so G 2 ψ(ḡ).
By induction hypothesis, this means that for all i ∈ {1, . . . , k}, either Go 2 ψoi (ḡo) or
Gv 2 ψvi (ḡv). Choose I ∈ P as the set of all i with Go 2 ψoi (ḡo). Then Go � φoI(ḡo) and
Gv � φvI(ḡv). Conversely, assume there is I ∈ P with Go � φoI(ḡo) and Gv � φvI(ḡv). Then
for any i ∈ {1, . . . , k}, we either have Go 2 ψoi (ḡo) ( when i ∈ I) or Gv 2 ψvi (ḡv) (when
i < I). By induction hypothesis, this means that G 2 ψ(ḡ).

�

An immediate consequence of Lemma 3.3.12 is the following Theorem:
Theorem 3.3.13
Let (Go1,-1), (Go2,-2) be two ordered abelian groups and (Gv1,-1), (Gv2,-2) two valua-
tionally quasi-ordered groups.
Set (G1,-1) := (Gv1,-1)× (Go1,-1) and (G2,-2) := (Gv2,-2)× (Go2,-2). Then
(G1, 0,+,−,-1) ≡ (G2, 0,+,−,-2) if and only if (Go1, 0,+,−,-1) ≡ (Go2, 0,+,−,-2) and
(Gv1, 0,+,−,-1) ≡ (Gv2, 0,+,−,-2).
Proof. One direction of the theorem is given by Proposition 3.3.10, let us now prove
the converse. Assume that Go1 ≡ Go2 and Gv1 ≡ Gv2 holds and let φ be a sentence of L
with G1 � φ. Take φo1, . . . , φon, φv1, . . . , φvn as in Lemma 3.3.12. Since G1 � φ, there is
i ∈ {1, . . . , n} such that Go1 � φoi and Gv1 � φvi . By assumption, we then have Go2 � φoi and
Gv2 � φ

v
i , which by choice of φoi , φvi implies that G2 � φ. We could show similarly that

G2 � φ implies G1 � φ, hence G2 ≡ G1. �

3.4 Quasi-order-minimality and C-relations
The goal of this section is to define a q.o. analog of o-minimal groups. More precisely,
we want to find a notion of minimality for compatible quasi-ordered abelian groups. We
want this notion of minimality to generalize o-minimality, but we also want it to give an
interesting class of valued groups when applied to valuationally quasi-ordered groups. In
this section, we will present our approach to answer this problem, which allows us to
define a notion of q.o.-minimality satisfying the criteria that we want. We will then show
that this notion of q.o.-minimality turns out to be equivalent to C-minimality.

An o-minimal group is defined as an ordered group (G,≤) such that any definable
subset of G is a finite disjoint union of intervals. By analogy, we want to define a
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quasi-order-minimal group as a group such that every definable subset of the group is a
finite disjoint union of “simple” definable sets. This requires first determining what the
“simple definable sets” are in the case of quasi-ordered groups.

Jan Holly (see [Hol95]) already gave the shape of simple definable sets of valued
fields: they are what she called swiss cheeses, i.e sets of the form X\

⋃n
i=1Xi where

X and each Xi is an ultrametric ball. Following her idea, we define a --ball of a
compatible q.o.a.g. (G,-) as a set which is either a singleton, the empty set or a set
of the form {g ∈ G | g − a - b} (closed ball) or {g ∈ G | g − a � b}(open ball) for
some parameters a, b ∈ G. We then define a --swiss cheese of G as a subset of G
of the form X\

⋃n
i=1Xi where X is either G or a --ball and each Xi is a --ball. Now

consider compatible q.o.a.g.’s as structures of the language {0,+,−,-}. We say that a
compatible q.o.a.g. (G, 0,+,−,-) is quasi-order-minimal if the following condition
holds: for every compatible q.o.a.g. (H, 0,+,−,-) which is elementarily equivalent to
(G, 0,+,−,-), every definable subset of H is a finite disjoint union of --swiss cheeses.
Note that if (G,-) happens to be an ordered abelian group then the --balls are just
initial segments, and the class of finite unions of swiss cheeses is exactly the class of finite
unions of intervals. Therefore, an ordered group is quasi-order minimal if and only if it is
o-minimal.

We will now show that compatible quasi-orders naturally induce a C-relation and
that quasi-order-minimality is equivalent to C-minimality. Since a compatible q.o. is a
mix of order and valuation, we can define a C-relation from a compatible q.o. by mixing
the definition of an order-type C-relation with the definition of a valuational C-relation.

Proposition 3.4.1
Let (G,-) be a compatible q.o.a.g. Consider the relation C(x, y, z) defined by the
following formula:

(x , y = z)∨ (x− z ∈ V∗ ∧ (y− z � x− z))∨ (y− z, x− z ∈ Go ∧ (0 � x− y ∧ 0 � x− z))

Then C is a C-relation compatible with +. Moreover, - is the only compatible q.o
inducing C, C is quantifier-free definable without parameters in the language {0,+,−,-}
and - is quantifier-free definable without parameters in the language {0,+,−, C}.

Proof. Let v be the valuation defined in Proposition 3.1.16 and Cv the C-relation
induced by v, i.e Cv(x, y, z) ⇔ v(y − z) > v(x − z). Let us show that C satisfies the
axioms of C-relations. It is clear from the definition of C that (C4) holds. We prove
(C1), (C2), (C3) simultaneously. Take x, y, z, w ∈ G such that C(x, y, z) and let us show
that C(x, z, y),¬C(y, x, z) and C(w, y, z) ∨ C(x,w, z) hold. Assume first that y = z.
Then clearly C(x, z, y) holds. Because y − y ∈ Go and y − y - 0, it follows from the
definition of C that C(y, x, y) cannot hold, so ¬C(y, x, z) holds. Finally, if w , y, then
by (C4), C(w, y, z) holds. If w = y, then C(x,w, z) holds. Now assume z , y. Assume
first that x − z ∈ V∗. Then C(x, y, z) implies Cv(x, y, z). Because Cv is a C-relation,
this implies Cv(x, z, y), which means v(z − y) > v(x − y). Since v takes its maximal
non-infinite value on Go\{0} and is constant on Go\{0}, it follows that x− y ∈ V∗, so
C(x, z, y) holds. We also have ¬Cv(y, x, z), and since x− z < Go this implies ¬C(y, x, z).
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If x− z - w − z, then Proposition 3.1.14 implies w − z ∈ V∗. Moreover, we then have
y − z � x − z - w − z, so y − z � w − z, so C(w, y, z) holds. If w − z � x − z, then
it directly follows from the definition of C that C(x,w, z) holds. Assume now that
x− z, y− z ∈ Go∧ 0 � x− y∧ 0 � x− z holds. We can obviously exchange z and y in this
formula, hence C(x, z, y). However, 0 � x− y ∈ Go implies y − x � 0, so C(y, x, z) does
not hold. If w − z ∈ V∗, then Proposition 3.1.14 implies y − z � w − z, hence C(w, y, z).
Assume w − z ∈ Go, which also implies w − x,w − y ∈ Go. If C(w, y, z) does not hold,
then either w − z � 0 or w − y � 0 must be true. If w − z � 0, then 0 � z − w, hence
0 � x− w = x− z + z − w, so C(x,w, z) holds; the same reasoning holds if w − y � 0.

The fact that C is compatible with + is obvious from its definition. Note that
Go, V∗ are both quantifier-free definable in the language {0,+,−,-} since we have
Go = {g ∈ G | g / −g ∨ g = 0} and V∗ = {g ∈ G | g ∼ −g , 0}, so C is defined
with a quantifier-free formula of that language. We want to show the converse. Set
G+ := {g ∈ G | 0 - g} and G− = {g ∈ G | g � 0}. We want to find a formula defining -
in the language {0,+,−, C}. Note first that we have

x � y ⇔ (x ∈ G− ∧ y ∈ G+) ∨ (x, y ∈ G+ ∧ x � y) ∨ (x, y ∈ G− ∧ −y � −x)

It is easy to see from the definition of C that for any x, y ∈ G+, x � y ⇔ C(y, x, 0).
Moreover, G− and G+ are quantifier-free definable with C: G+ ∩ Go is given by the
formula C(x,−x, 0) ∨ (x = 0). Indeed, by definition of C we have C(x,−x, 0) ⇔
(x , −x = 0) ∨ (x ∈ V∗ ∧ −x � x) ∨ (x,−x ∈ Go ∧ 0 � x ∧ −x � x). Obviously
(x , −x = 0) ∨ (x ∈ V∗ ∧ −x � x) is impossible (if x is in V∗ then x ∼ −x) so
C(x,−x, 0)⇔ (x,−x ∈ Go∧0 � x∧−x � x) which means x ∈ Go∩G+. It follows that G−
is defined by the formula C(−x, x, 0) and that V∗ is defined by ¬C(x,−x, 0)∧¬C(−x, x, 0).
Thus, the formula

φ(x, y) :≡ (x ∈ G− ∧ y ∈ G+) ∨ (x, y ∈ G+ ∧ C(y, x, 0)) ∨ (x, y ∈ G− ∧ C(−x,−y, 0))

is a quantifier-free formula of the language {0,+,−, C} and we have x - y ⇔ ¬φ(y, x)
for any x, y ∈ G. This proves that - is quantifier-free definable in {0,+,−, C} and it
also proves that - is the only compatible q.o inducing C since we can recover - from C.

�

Thus, compatible q.o.a.g.’s can be seen as C-groups. We now want to show that
quasi-order-minimality is equivalent to C-minimality. In [Del11], Delon defined a notion
of swiss cheeses for C-structures. Let (M,C, . . . ) be a C-structure. A cone is a subset of
M of the form {x | C(a, x, b)} for some parameters a, b ∈M . A thick cone is a subset
of M of the form {x | ¬C(x, a, b)} for some parameters a, b ∈M . A C-swiss cheese is a
subset of M of the form X\

⋃n
i=1Xi where X is either M or a (possibly thick) cone and

each Xi is a (possibly thick) cone. The author of [Del11] then gives a characterization of
C-minimal structures in terms of C-swiss cheeses, which we reformulate here:

Proposition 3.4.2 (Proposition 3.3 of [Del11])
LetM = (M,C, . . . ) be a C-structure. Then (M,C, . . . ) is C-minimal if and only if for
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every N = (N,C, . . . ) with N ≡M, every definable subset of N is a finite disjoint union
of C-swiss cheeses.

It turns out that the notion of C-swiss cheese coincides with the notion of --swiss
cheese which we just defined:

Lemma 3.4.3
Let (G,-) be a compatible q.o.a.g. and C the C-relation defined in Proposition 3.4.1.
Then any --ball in G is a cone or a thick cone, and any cone or thick cone is a --ball. In
particular, for any X ⊆ G, X is a --swiss cheese if and only if X is a C-swiss cheese.

Proof. Let X ⊆ G. Assume first that X is a (possibly thick) cone. Takes a, b ∈ G and
assume X is defined by the formula ¬C(x, a, b). Assume first that a− b ∈ V∗. Then it
follows from the definition of C that ¬C(x, a, b) is equivalent to (x = a∨a , b)∧ (x− b -
a− b). Since a− b ∈ V∗, we have a , b, so X is defined by x− b - a− b, which is a ball.
Assume now that a− b ∈ Go. Then it follows from the definition of C that ¬C(x, a, b) is
equivalent to x− b - 0 ∨ x− a - 0. If b ∈ Go, then also a ∈ Go, and it then follows that
x− b - 0 ∨ x− a - 0 is equivalent to x - max(a, b), which is a ball. Assume that b ∈ V∗.
Since a−b ∈ Go, Proposition 3.1.4 implies that either a−b - 0 or b−a - 0 holds. Assume
that a− b - 0, and assume that x− a - 0. We then have x− b = x− a+ a− b. Since
x− a - 0 and a− b - 0, this implies x− b - 0. This proves that x− a - 0⇒ x− b - 0,
so x− b - 0 ∨ x− a - 0 is equivalent to x− b - 0. If b− a - 0, we can show similarly
that x− b - 0 ∨ x− a - 0 is equivalent to x− a - 0. This shows that every thick cone
is a --ball. Now assume that X is given by the formula C(a, x, b). If a− b ∈ V∗, then
C(a, x, b) is equivalent to a− x � a− b. If a− b ∈ O−, then X = ∅. If a− b ∈ O+, then
C(a, x, b) is equivalent to 0 � a− x ∈ Go, which is equivalent to x− a � 0. This proves
that every cone is a --ball. It then follows that every C-swiss cheese is a --swiss cheese.

Conversely, assume that X is a --ball. Assume that X is given by the formula
x − a - b. If 0 � b, then one can check that x − a - b is equivalent to ¬C(x, b + a, a),
which is a thick cone. Assume that b - 0. If Go is trivial, then b = 0 and X = {a}, so
assume that Go is not trivial. Then there is g ∈ Go with −b � g. We then have 0 � b+ g.
It also follows from (Q2) that for all x, x− a - b⇔ x− a+ g - b+ g. Since 0 � b+ g,
this brings us back to the case 0 � b. This proves that every closed --ball is a thick cone.
Finally, assume that X is defined by x − a � b. By the same argument as before, we
can assume that 0 � b. One can check that X is then defined by C(b+ a, x, a), so X is
a cone. This shows that every --ball is a cone, and it immediately follows that every
--swiss cheese is also a C-swiss cheese.

�

As a consequence, C-minimality is equivalent to quasi-order-minimality:

Proposition 3.4.4
Let L be a language containing {0,+,−,-} and let L′ be the language obtained when we
replace - by C in L. Assume (G,-, . . . ) is an L-structure so that (G,-) is a compatible
q.o.a.g. and let (G,C, . . . ) be the corresponding L′-structure where C is interpreted
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as the C-relation induced by -. Then (G,-, . . . ) is quasi-order-minimal if and only if
(G,C, . . . ) is C-minimal.

Proof. Assume that (G,-, . . . ) is quasi-order-minimal and let (H,C, . . . ) be an L′-
structure such that (G,C, . . . ) ≡ (H,C, . . . ). Because C is definable in L without
parameters and - is definable in L′ without parameters (see Proposition 3.4.1), it follows
that (G,-, . . . ) ≡ (H,-, . . . ). By assumption, it follows that every L-definable subset of
H is a finite disjoint union of --swiss cheeses. By Proposition 3.4.3, it follows that every
L′-definable subset of H is a finite disjoint union of C-swiss cheeses. This proves that
(G,C, . . . ) is C-minimal. The proof of the other direction is similar. �

As a concluding remark for this chapter, we would like to detail the connection
between compatible q.o.a.g.’s and C-groups. Proposition 3.4.1 basically says that any
compatible q.o.a.g. is a C-group. This allows us to give examples of C-groups which
are neither order-type nor valuational: Indeed, any example from Example 3.1.2 can
be seen as a C-group. This naturally raises the following question: Is every compatible
C-relation on an abelian group induced by a compatible q.o.? In the next Chapter, we
will see that the answer to this question is negative. However, it should be emphasized
that my work on compatible q.o.a.g.’s played an essential role in the discovery of the main
result of Chapter 4 (Theorem 4.3.33), which gives the structure of an arbitrary C-group.
Indeed, seeing compatible q.o.a.g.’s as an example of C-groups enabled me to gain the
right intuition on the structure of arbitrary C-groups. Theorem 4.3.33, as well as the
methods used to prove it, were inspired by my work on compatible q.o.a.g.’s (Note that
Theorem 4.3.33 bears some similarities with Theorem 3.1.26). It is interesting to note
that our structure Theorem 3.1.26 shows that compatible q.o.a.g.’s form a particularly
simple class of C-groups since the set of o-type elements is an initial segment (one can
compare this setting to Proposition 4.3.38, which states that a C-group can a priori
contain any arbitrary alternation of o-type and v-type parts). In a sense, compatible
q.o.a.g.’s are the simplest examples of C-groups whose C-relation is neither order-type nor
valuational. This makes compatible q.o.a.g.’s potentially useful for the study of C-groups.
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Chapter 4

Quasi-orders and C-groups

Introduction
The goal of this chapter is to describe C-groups and to characterize C-minimal groups
amongst them. We saw in Section 3.4 that the class of compatible q.o.a.g.’s is a subclass
of the class of abelian C-groups. However, it is a strict subclass: we can give examples of
abelian C-groups whose C-relation does not come from a compatible q.o. (see Examples
4.3.1). This shows that the class of compatible quasi-orders is not really adapted to
the study of the whole class of C-groups. In this chapter, we introduce a new kind of
quasi-orders, which we call C-quasi-orders (see Definition 4.1.2), which in some sense
generalize compatible q.o.’s. C-quasi-orders are in a one-to-one correspondence with
compatible C-relations on groups. The study of C-groups is made easier by the use of
C-quasi-orders, which is why we will not be working directly with C-relations but with
C-quasi-orders.

We start by introducing and axiomatizing C-quasi-orders in Section 4.1.1. We then
explain how C-quasi-orders relate to compatible q.o.’s in Section 4.1.2. Section 4.1.3 gives
a few results on the behavior of the group operation with respect to the C-q.o. These
results will be particularly useful later when we describe the structure of a C-q.o. group.
In Section 4.1.4, we describe the structure of fundamental C-q.o.’s, i.e C-q.o.’s induced
by fundamental C-relations. As one might expect, a valuational C-relation induces a
valuational C-q.o. The case of order-type C-q.o.’s is more complicated. In particular, it
is important to note that order-type C-q.o.’s are not orders. However, order-type C-q.o.’s
are all obtained from orders in the same way (see Proposition 4.1.17). If we start with a
group order on G, then the corresponding C-q.o. is obtained by merging all the negative
elements of G into one single equivalence class (which then becomes the class of o−-type
elements), and then moving this class between 1 and the set of positive elements (which
is the class of o+-type elements). The order remains unchanged on the positive cone of
G, which allows us to recover the original order from its corresponding C-q.o.

In Section 4.2, we are interested in finding C-q.o. group analogs of Theorems 2.7.9
and 2.3.1. In the process, we show that, as happens for compatible q.o.’s, a C-q.o. induces
a C-q.o. on the quotient G/H if H is convex. This notion of induced q.o. on a quotient

70



Lehéricy Gabriel - Thèse de doctorat - 2018

plays an important role later when we decompose C-q.o. groups into “valued” and
“ordered” parts. We obtain an analog of Theorem 2.7.9 in Theorem 4.2.4. We then show
that the class of C-q.o.’s is stable under lifting (Proposition 4.2.7). We then establish
a “Baer-Krull theorem” for C-q.o. group (Theorem 4.2.11). We deduce two corollaries
from it: a “Baer-Krull theorem” for ordered groups (Theorem 4.2.13) and a “Baer-Krull
theorem” for valued groups (Theorem 4.2.12). We then recover the classical Baer-Krull
theorem from our Baer-Krull theorem for ordered groups in Section 4.2.3.

Section 4.3 describes the structure of C-groups. Roughly speaking, a C-group is a
generalization of a compatible q.o.a.g., in the sense that it is a mix of ordered and valued
groups. More precisely, we can decompose the group into a family of strictly convex
subsets, on each of which the C-q.o. is “fundamental-like” (see Remark 4.1.23 for this
terminology). The difference between a compatible q.o.a.g. and an arbitrary C-group
is that, whereas the ordered part of a compatible q.o.a.g. is always an initial segment
(Proposition 3.1.14), a C-group can in general alternate between “order-type-like” parts
and “valuational-like” parts in a more arbitrary way (see Proposition 4.3.38). The main
result of this chapter is Theorem 4.3.33, which is a decomposition theorem for C-q.o.
groups. Theorem 4.3.33 basically states that valued and ordered groups are the “building
blocks” of C-groups. In analogy to what we did in Chapter 3, the main idea to obtain
this result is to use the distinction between v-type and o-type elements (see Definition
2.7.10). To each g ∈ G, we associate a subset Tg of G called the type-component of
G. This set Tg is characterized by two properties : Tg is strictly convex, and if g is
v-type (respectively o-type), then the C-quasi-order - is valuational-like (respectively,
order-type-like) on Tg. Moreover, Tg is maximal with these properties. We can then show
that the family of all type-components form a partition of G.

We want to draw attention to a counter-intuitive phenomenon, which we call welding,
which occurs in certain C-quasi-ordered groups (see Definition 4.3.2). Welding happens
when the group contains an o-type element which is equivalent to a v-type element.
This is counter-intuitive, since one would expect the quasi-order to separate elements of
different types. If there is no welding in the group, then the Tg’s are actually convex.
However, if there is welding at a point g, then the maximum of Tg is equivalent to
the minimum of a Th, which means that the type-components are only strictly convex.
This also means that a C-q.o. cannot in general be obtained by lifting fundamental
C-q.o.’s. However, Theorem 4.3.33 states that any C-q.o. can be obtained by first lifting
fundamental C-q.o.’s and then “welding” if necessary, i.e coarsening the quasi-order in a
certain way (see Proposition 4.3.32).

We finish this chapter by a study of C-minimal groups via the decomposition given
by Theorem 4.3.33. We start by reinterpreting Macpherson’s and Steinhorn’s results on
C-minimal groups (see [MS96]) in terms of C-q.o.’s in Section 4.4.1. In Section 4.4.2,
we show a “Feferman-Vaught” theorem for C-q.o. groups, i.e. we show that finite
valuational products preserve elementary equivalence (see Theorem 4.4.13). We then
show that any welding-free abelian C-group is a finite valuational product of fundamental
C-minimal groups (see Theorem 4.4.37). Finally, we show that the valuational product
of a C-minimal order-type C-q.o. group by a finite valued group is always C-minimal
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(Proposition 4.4.41). This allows us to give an example of a C-minimal group which is
neither order-type nor valuational (Example 4.4.43).

The groups considered in this chapter are generally non-abelian, which is why we
adopt the multiplicative notation. We recall that, whenever a q.o. group (G,-) is fixed,
V denotes the set of v-type elements, O denotes the set of o-type elements, O− the set of
o−-type elements and O+ the set of o+-type elements.

4.1 C-quasi-orders

4.1.1 Definition and axiomatization

As mentioned in the introduction, we want to associate a quasi-order to every compatible
C-relation. This idea originates from the following general fact:

Lemma 4.1.1
Let A be a set (not necessarily a group), C a C-relation on A and take z ∈ A. Then z
induces a quasi-order on A by a - b⇔ ¬C(a, b, z).

Proof. Note that ¬C(z, z, z) follows from (C2), so we have z - z. Let a ∈ A with a , z.
By (C4), we have C(z, a, a). By (C2), this implies ¬C(a, z, a), which by (C1) implies
¬C(a, a, z). This proves that - is reflexive. Transitivity is the contra-position of axiom
(C3). Totality is given by axiom (C2).

�

In the context of groups, the natural candidate for the parameter z is z = 1, hence
the following definition:

Definition 4.1.2
Let G be a group. For any compatible C-relation C on G, we define the q.o. induced
by C as the q.o. given by the formula x - y ⇔ ¬C(x, y, 1). A C-quasi-order (C-q.o.)
on G is the q.o. induced by a compatible C-relation on G. A C-quasi-ordered group
(C-q.o.g.) is a pair (G,-) consisting of a group G endowed with a C-q.o. -.

Remark 4.1.3: If - is the q.o. induced by C, then we have C(x, y, 1)⇔ y � x.

If - is a C-q.o. induced by the C-relation C, then we say that - is order-type
(respectively valuational/ fundamental) if C is order-type (respectively valuational/
fundamental ). These definitions make sense thanks to the following proposition:

Proposition 4.1.4
Let - be a C-q.o. Then there is only one compatible C-relation inducing it, namely the
one given by the formula C(x, y, z)⇔ yz−1 � xz−1.

Proof. Let C be a compatible C-relation inducing -. C is compatible, so we have
C(x, y, z)⇔ C(xz−1, yz−1, 1)⇔ yz−1 � xz−1. �
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Remark 4.1.5: Note that the definition of valuational C-q.o.’s which we just gave
coincides with the definition of valuational q.o.’s given in Section 2.7. Indeed, if v is a
valuation on G, C the C-relation induced by v and - the C-q.o. corresponding to C, then
it easily follows from the definition of C and - that x - y ⇔ v(x) ≥ v(y) for all x, y ∈ G.
In other words, a C-q.o. is valuational if and only if it is the q.o. induced by a valuation.

We now want to axiomatize the class of C-q.o.’s. Proposition 4.1.4 states that - is a
C-q.o. if and only if the formula yz−1 � xz−1 defines a compatible C-relation. We thus
want to answer the question: When does this formula define a compatible C-relation?

Lemma 4.1.6
Let - be a quasi-order on a group G and define a ternary relation C(x, y, z) by the
formula yz−1 � xz−1. Then the relation C satisfies (C2) and (C3).

Proof. C clearly satisfies (C2). Assume C(x, y, z) and ¬C(w, y, z) hold. This means
yz−1 � xz−1 and ¬(yz−1 � wz−1). Since - is total, this implies wz−1 - yz−1 � xz−1,
hence wz−1 � xz−1 i.e C(x,w, z). This proves (C3). �

This gives us an axiomatization of C-q.o.’s:

Proposition 4.1.7 (Axiomatization of C-q.o’s)
Let G be a group and - a q.o. on G. Then - is a C-q.o. if and only if the following three
axioms are satisfied:

(CQ1) ∀x ∈ G\{1}, 1 � x.

(CQ2) ∀x, y(x - y ⇔ xy−1 - y−1).

(CQ3) ∀x, y, z ∈ G, x - y ⇔ xz - yz.

Note that “⇔” can be replaced by “⇒” in (CQ2) and (CQ3) since (xy−1)(y−1)−1 = x,
(y−1)−1 = y and (xz)z−1 = x.

Proof. Define C(x, y, z) := yz−1 � xz−1. By Proposition 4.1.4, - is a C-q.o. if and
only if C is a compatible C-relation. Assume C is a compatible C-relation. By (C4),
we have C(x, 1, 1) for any x , 1, which means 1 � x. Take x, y, z ∈ G with x - y,
which means ¬C(x, y, 1). By (C1), we then have ¬C(x, 1, y). By compatibility, this
implies ¬C(xy−1, y−1, 1) i.e. xy−1 - y−1, hence (CQ2). By compatibility we also have
¬C(xz, yz, 1), hence (CQ3). Conversely, assume (CQ1), (CQ2), (CQ3) hold. By Lemma
4.1.6, we already know that C satisfies (C2) and (C3). We first prove that C is compatible.
Take x, y, z, u, v ∈ G with C(x, y, z). We thus have yz−1 � xz−1. By (CQ3), this implies
uyz−1u−1 � uxz−1u−1 i.e. (uyv)(uzv)−1 � (uxv)(uzv)−1, so C(uxv, uyv, uzv). This
proves compatibility. Let x , y in G. (CQ1) implies 1 � xy−1 which means C(x, y, y), so
C satisfies (C4). Now assume ¬C(x, y, z), i.e. xz−1 - yz−1. By applying (CQ2) to this
inequality, we get xy−1 - zy−1, hence ¬C(x, z, y), which proves that C satisfies (C1). �
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Remark 4.1.8: By combining (CQ3) and (CQ2) we obtain an improved version of
(CQ2): x - y ⇒ xy−1 - y−1 ∧ y−1x - y−1. We will also often use the contra-position of
(CQ2):

(CQ′2) y � x⇒ y−1 � xy−1.

4.1.2 Connection with compatible q.o’s

We now want to establish the connection between the notion of C-q.o. and the notion of
compatible q.o. developed in chapter 3. Proposition 3.4.1 shows that we can associate
a compatible C-relation to any compatible quasi-order defined on an abelian group.
However, this does not mean that compatible q.o.’s are C-q.o.’s. In fact, we have the
following:

Proposition 4.1.9
Let (G,-) be a compatible quasi-ordered abelian group. Then - is a C-q.o. if and only
if - is valuational.

Proof. We know that valuational q.o.’s are C-q.o.’s. Now assume that - is a compatible
q.o. and a C-q.o. By Proposition 3.1.14, (O,-) is an ordered abelian group. If {1} ( O
were true, then there would be g ∈ G with g � 1. This would contradicts axiom (CQ1).
Therefore, we have O = {1}, hence V = G. By Proposition 3.1.17, it follows that - is
valuational. �

Now let (G,-) be a compatible quasi-ordered abelian group. Proposition 4.1.9 states
that, if the subgroup O of o-type elements is non-trivial, then - is not a C-q.o. However,
we can transform - into a corresponding C-q.o -∗. We know that - coincides with an
order ≤ on O and behaves like a valuation on V∗. Now define -∗ as follows: on O, -∗ is
the order-type C-q.o corresponding to ≤. On V∗, -∗ coincides with -. Finally, declare
O �∗ V∗. Then -∗ is a C-q.o. Now denote by C∗ the C-relation corresponding to the
C-q.o -∗ and denote by C the C-relation induced by the compatible q.o - as defined in
Proposition 3.4.1. By distinguishing the cases xz−1 ∈ V∗ and xz−1 < V∗, one can show
that C(x, y, z) holds if and only if yz−1 �∗ xz−1. It then follows that C = C∗.

4.1.3 Some relations between the q.o. and the group operation

Here we investigate the relation between multiplication and -. More precisely, we want
to understand how the equivalence class of the product of two elements relates to the
equivalence class of each factor. These results will play a fundamental role in the proofs
of Section 4.3.3. We fix a C-q.o.g. (G,-). We first note that in many cases the order of
the factors will not matter:

Lemma 4.1.10
For any g, h ∈ G, hg ∼ g ⇔ gh ∼ g.

Proof. It is a direct consequence of (CQ3): take the inequalities hg - g - hg and
conjugate by g. �
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Lemma 4.1.11
Let g, h ∈ G. The following holds:

(i) If h � g−1, then g ∼ hg ∼ gh.

(ii) Assume that h � {g−1, g}. Then h−1 � {g, g−1} and we have gh ∼ g ∼ gh−1 and
g−1 ∼ hg−1 ∼ h−1g−1.

(iii) If {h, h−1} - g−1 � g, then g ∼ gh ∼ gh−1 ∼ hg ∼ h−1g and
g−1 ∼ g−1h−1 ∼ g−1h ∼ h−1g−1 ∼ hg−1.

Proof. (i) By (CQ2), h - g−1 ⇒ hg - g. By (CQ′2), h � g−1 ⇒ h−1 � g−1h−1. By
(CQ2), h−1 - g−1h−1 ⇒ g - hg, hence g ∼ hg.

(ii) By (i), g ∼ gh and g−1 ∼ g−1h. By (CQ′2), h � gh ⇒ h−1 � g and h � g−1h ⇒
h−1 � g−1. In particular, h−1 satisfies h−1 � {g, g−1}, so we get g ∼ gh−1 and
g−1 ∼ g−1h−1, hence the claim.

(iii) By (i), {h, h−1} � g implies g−1 ∼ g−1h−1 ∼ g−1h. By (CQ2), h - g−1 ⇒ hg - g
and h−1 - g−1h−1 ⇒ g - hg, hence g ∼ hg. Analogously, g ∼ gh−1. The rest
follows from Lemma 4.1.10.

�

We can summarize these results in the following proposition:

Proposition 4.1.12
Assume g is v-type. If h � g, then h−1 � g and we have

hg ∼ h−1g ∼ gh−1 ∼ gh ∼ g ∼ g−1 ∼ g−1h ∼ g−1h−1 ∼ h−1g−1 ∼ hg−1.
Assume g is o+-type. If {h, h−1} - g−1, then we have
hg−1 ∼ h−1g−1 ∼ g−1h−1 ∼ g−1h ∼ g−1 � g ∼ gh ∼ gh−1 ∼ hg ∼ h−1g.

We now want to find an analog of axiom (Q2) of compatible q.o’s (see Definition
3.1.1).

Lemma 4.1.13
If f - g and g−1 - h−1g−1, then fh - gh and hf - hg.

Proof. By (CQ2), f - g implies fg−1 - g−1. By assumption, this implies fg−1 - h−1g−1.
By (CQ2) again, this implies fh - gh. (CQ3) then implies hf - hg. �

Proposition 4.1.14
Let f, g ∈ G such that f - g and assume that either g / h−1 or {h, h−1} - g � g−1 holds.
Then we have fh - gh and hf - hg.

Proof. If h−1 � g, then by 4.1.11 we have g−1 ∼ h−1g−1. If g � h−1, then (CQ′2) implies
g−1 � h−1g−1. In both cases, we have g−1 - h−1g−1, so we can apply the previous
lemma. For the second claim, we use 4.1.12 to get g−1 ∼ h−1g−1. �
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Remark 4.1.15: We just showed that C-q.o.g.’s satisfy the formula: ∀g, h, f ∈ G,
f - g / h−1 ⇒ fh - gh. This formula is very similar to axiom (Q2) of compatible q.o.’s
and seems to be more practical to deal with than axiom (CQ2) of C-q.o.’s. However, we
don’t know if we can actually replace (CQ2) by this formula in our axiomatization of
C-q.o.’s.

4.1.4 Fundamental C-q.o.’s

Before investigating the structure of an arbitrary C-q.o.g., we want to understand the
structure of fundamental C-q.o.’s. We know that valuational C-q.o.’s are the q.o.’s induced
by a valuation. Moreover, we can easily characterize valuational C-q.o.’s by looking at
the type of elements:

Proposition 4.1.16
Let (G,-) be a C-q.o. group. Then - is valuational if and only if V = G.

Proof. If - is valuational, then every element must obviously be v-type. Conversely,
assume that every element is v-type. We use Remark 2.7.3. (i) and (iv) of Remark 2.7.3
follow from (CQ1) and (CQ3), and (iii) follows from the fact that every element is v-type,
so we just have to show (ii). Now let g, h ∈ G. If g - h, then g - h−1 (because h ∼ h−1).
Then (CQ2) implies gh - h. �

The order-type case is a bit more complicated. Note first that if we start with an
ordered group (G,≤), if C is the C-relation induced by ≤ and if - is the corresponding
C-q.o., then there is no reason for ≤ and - to be the same. In fact, an order-type
C-q.o. can never be an order. Let us have a closer look at order-type C-q.o.’s. Let (G,≤)
be an ordered group with positive cone P , C the C-relation induced by ≤ and - the
corresponding C-q.o. By looking at the definition of C in Example 2.6.1 and at Definition
4.1.2, we get the following formulas:

x - y ⇔ (y , 1 ∨ x = y) ∧ (yx−1 ∈ P ∨ x−1 ∈ P ) (O1)

y � x⇔ (y = 1 ∧ x , y) ∨ (yx−1 < P ∧ x−1 < P ) (O2)

This allows us to describe order-type C-q.o’s:

Proposition 4.1.17
Let (G,≤) be an ordered group with positive cone P and - the corresponding C-q.o.
The following holds:

(1) O = G, O+ = P\{1} and O− = P−1\{1}.

(2) 1 � O− � O+.

(3) - is trivial on O−.
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(4) - coincides with ≤ on O+. In particular, - is an order on O+.

Proof. Formula (O2) immediately implies P\{1} = O+. Since O− = (O+)−1, it follows
that O− = P−1\{1}. Finally, P ∪ P−1 = G then implies O = G. This proves (1). Now
let us prove (2). 1 � O− follows directly from (CQ1). Take g ∈ O− and h ∈ O+. By
(1), we then have h, g−1 ∈ P , hence hg−1 ∈ P ∧ h ∈ P , hence gh−1 < P ∧ h−1 < P . By
formula (O2), this implies g � h. This proves (2). Now let us prove (3). Take g, h both
in O−. By (1), we have g−1 ∈ P . It then follows immediately from formula (O1) that
g - h. Similarly, we have h - g, hence g ∼ h. Now let us show (4). Take g, h ∈ O+.
Since g−1 < P , it follows immediately from formula (O1) that g - h holds if and only if
hg−1 ∈ P . This in turn is equivalent to g ≤ h. �

In example 4.3.1(c), we have a C-q.o group (G,-) satisfying conditions (1) of Propo-
sition 4.1.17 but where conditions (2),(3) and (4) fail. Therefore, the condition O = G
alone is not sufficient for - to be order-type. However, if O = G, then we can associate
an order to -. For any C-q.o. - on G, let us denote by P (-) the set {1} ∪ O+. It turns
out that, if G = O, then P (-) is a positive cone of G. To show this, we first need to
show the following lemma, which will also be useful later in Section 4.3.3:

Lemma 4.1.18
Let (G,-) be a C-q.o. group and g ∈ O+. Let h ∈ G with g−1 � h - g. Then h−1 ∼ g−1,
and in particular h ∈ O+.

Proof. By (CQ2), h - g implies hg−1 - g−1, hence hg−1 - h. By (CQ2) and (CQ3), this
implies g−1 - h−1. Now assume that g−1 � h−1 holds. By Lemma 4.1.11, we then have
h ∼ hg−1 - g−1, which is a contradiction. Therefore, g−1 ∼ h−1. By assumption on h, it
follows that h−1 � h, hence h ∈ O+. �

We then have the following:

Proposition 4.1.19
Let (G,-) be a C-q.o. group. The following holds:

(1) The set P (-) is stable under “∼”.

(2) If G = O, then P (-) is a positive cone on G.

Proof. Set P := P (-). Lemma 4.1.18 implies that O+ is stable under “∼”. It then
follows from (CQ1) that P is also stable under “∼”. Assume O = G and let us prove
that P is a positive cone on G. We clearly have P ∩ P−1 = {1} and P ∪ P−1 = G. The
fact that zPz−1 = P for every z ∈ G is a direct consequence of (CQ3). We just have
to show P.P ⊆ P . We actually show that P−1 is closed under the group operation. Let
g, h ∈ P−1 = O− ∪ {1}. Without loss of generality, we may assume g - h. Since h ∈ O−,
this implies g � h−1. This implies gh ∼ h by Lemma 4.1.11, and since P is stable under
“∼” it follows that gh ∈ P−1. �
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Remark 4.1.20: Note that the only place in the proof where we used the assumption
O = G is to prove G = P ∪ P−1. In particular, if G contains some non-trivial v-type
elements, then P (-) is the positive cone of a partial order on G.

Proposition 4.1.19 gives us a map P : {C-q.o.’s with O = G} → {group orders on G}
defined by -7→ P (-). This map is surjective: Indeed, if P is any positive cone on G, take
C to be the C-relation induced by P and - the corresponding C-q.o. Then it follows from
Proposition 4.1.17 that P (-) = P . Note however that P is not injective, as illustrated
by example 4.3.1(c). Indeed, let (G,-) be as in Example 4.3.1(c). Then we have O = G,
but - is not order-type because it does not satisfy condition (2) of Proposition 4.1.17.
Let P := P(-), take C the C-relation induced by P and -∗ the C-q.o. induced by C.
Then P(-∗) = P(-), but -∗ and - don’t coincide because -∗ is order-type.

We can now use P to give a full characterization of order-type C-q.o.’s:

Proposition 4.1.21
Let (G,-) be a C-q.o. group. Then - is order-type if and only if the two following
conditions hold:

(1) G = O.

(2) O− � O+.

Moreover, if - is order-type, then - is trivial on O− and - is an order on O+.

Proof. One direction is given by Proposition 4.1.17. Let us prove the converse. Assume
that (1) and (2) are satisfied, set P := P(-). We know that P is a positive cone on
G thanks to Proposition 4.1.19. We will show that - is the C-q.o. induced by P . We
just have to show formula (O1) is satisfied. Assume that x - y holds. By (CQ1),
we must have x = y ∨ y , 1. Assume that x−1 < P . We then have x−1 ∈ O−, so
x ∈ O+. By assumption (2) and by x - y, we then have y ∈ O+, so y−1 ∈ O−. By
(CQ2), x - y implies xy−1 - y−1. It then follows from (2) that xy−1 < O+, hence
xy−1 < P\{1}. But since P is a positive cone, this implies yx−1 ∈ P . This proves that
(x = y ∨ y , 1) ∧ (yx−1 ∈ P ∨ x−1 ∈ P ) holds. Now assume that ¬(x - y) holds, i.e
y � x. (CQ1) immediately implies x , 1. Assume that x = y ∨ y , 1 holds. Obviously,
we cannot have x = y, so we must have y , 1. If x were in O−, then it would follows
from (2) and from y � x that y = 1, which we excluded. Therefore, x < O−. It follows
that x ∈ P , which implies x−1 < P because P is a positive cone. By (CQ′2), y � x
implies y−1 � xy−1. If xy−1 were in O−, then by (2) we would have y−1 = 1, which is
impossible. Therefore, we must have xy−1 < O−. By (1), this implies yx−1 ∈ O−, hence
yx−1 < P . This shows that ¬((x = y ∨ y , 1) ∧ (yx−1 ∈ P ∨ x−1 ∈ P )) holds. This
proves that formula (O1) is satisfied, so - is the C-q.o. induced by P . It then follows
from Proposition 4.1.17 that - is trivial on O− and that - is an order on O+. �

All of this shows us how to construct - from ≤ and vice-versa. More precisely, we
see that ≤ and - define the same sets:
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Proposition 4.1.22
Let (G,≤) be an ordered group and - the corresponding C-q.o. The relation - is
quantifier-free definable in the language {1, .,−1 ,≤} and ≤ is quantifier-free definable in
{1, .,−1 ,-}.

Proof. Formula (O1) gives a definition of - using ≤. Conversely, it follows from Propo-
sition 4.1.17 that P = {1} ∪ O+, and we know that O+ is definable with -, so P is
definable in {1, .,−1 ,-}. �

Remark 4.1.23: We just saw what fundamental C-q.o. groups look like. In Section
4.3, our work will consist in showing that any C-q.o. group is in some sense a “mix” of
the fundamental ones. This means that we will identify parts of the group where the q.o.
is “order-type-like” and parts where it is “valuational-like”. Intuitively, we want to say
that a q.o is “like” a fundamental C-q.o. on a subset T of G if it shares the important
properties of this fundamental C-q.o. We will say that the q.o. - is valuational-like
on T if gh - max({g, h}) for any g, h ∈ T . We will say that - is order-type-like on
T if T can be partitioned into two subsets, T− and T+, such that the following holds:
T− = {g−1 | g ∈ T+}, T− � T+ and - is trivial on T− (i.e g ∼ h for all g, h ∈ T−). This
definition is motivated by Proposition 4.1.17. We say that - is fundamental-like on T
if it is either valuational-like or order-type-like on T .

4.2 A Baer-Krull theorem for C-q.o. groups
We want to give an analog of theorems 2.7.9 and 2.3.1 for quasi-ordered groups. We
saw that compatible q.o.’s are not suited for a Baer-Krull theorem, but we will see that
C-q.o.’s are.

4.2.1 characterization of compatibility

We first want to characterize compatibility between valuations and C-q.o.’s in analog
of Theorem 2.7.9. This relates to the notion of induced q.o. on a quotient and to the
notion of convexity of subgroups. Note first that axiom (CQ1) immediately implies the
following:

Proposition 4.2.1
Let (G,-) be a C-q.o.g. and H a subgroup of G. Then H is convex in (G,-) if and only
if it is an initial segment of (G,-).

As happens with compatible q.o.’s, we have the following:

Proposition 4.2.2
Let (G,-) be a C-q.o.g. and H a normal subgroup of G. Then - induces a q.o. on G/H
if and only if H is convex in G. If H is convex in G, then the q.o. induced by - on G/H
is a C-q.o. and it is given by the formula:

gH - hH ⇔ (g ∈ H) ∨ (h < H ∧ g - h). (†)
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Moreover, for any g ∈ G\H, then g is v-type (respectively, o+-type/o−-type) if and only
if gH is v-type (respectively, o+-type/o−-type).

Proof. By (CQ1) and by Lemma 4.1.14, - satisfies condition (∗) of Lemma 2.7.20. If -
induces a C-q.o. on G/H, then Lemma 2.7.20 immediately implies that H is convex in G.
Conversely, assume that H is convex in G. Then Lemma 2.7.20 implies that - induces a
q.o. on G/H with cl(1) = {1}. Proposition 4.2.1 implies that H is an initial segment of G,
which immediately implies that (G/H,-) satisfies (CQ1). We will now show that the q.o.
- on G/H is given by the formula gH - fH ⇔ (g ∈ H)∨(f < H∧g - f), and we will then
show that - on G/H satisfies (CQ2) and (CQ3). Assume gH - fH and g < H. There is
h1, h2 ∈ H with gh1 - fh2. Since g < H, we have gh1 < H. Since H is an initial segment
of G, it follows that fh2 < H, hence also f < H. By convexity of H, we have h1 � g−1

and h2 � f−1. It follows from Lemma 4.1.11 that gh1 ∼ g and fh2 ∼ f . Since gh1 - fh2,
it follows that g - f . This shows that gH - fH ⇒ (g ∈ H) ∨ (f < H ∧ g - f) holds.
Conversely, assume that (g ∈ H)∨(f < H∧g - f) holds. We know that (G/H,-) satisfies
(CQ1), so g ∈ H implies gH - hH. Assume that (f < H ∧ g - f) holds. Then g - f
immediately implies gH - fH. This proves that gH - fH ⇔ (g ∈ H)∨ (f < H ∧ g - f).
Now let us prove (CQ2) ∧ (CQ3). Assume gH - fH, so (g ∈ H) ∨ (f < H ∧ g - f).
If g ∈ H, then gf−1H = f−1H, hence gf−1H - f−1H. Moreover, since H is normal,
gz ∈ H, and by (CQ1) on G/H this implies gzH - fzH. Assume f < H ∧ g - f . Then
f−1, fz < H, and since (CQ2) and (CQ3) are satisfied on G we also have gf−1 - f−1

and gz - fz. It follows that gf−1H - f−1H and gzH - fzH. �

Remark 4.2.3: Assume that H is convex. Then it follows from formula (†) in Proposi-
tion 4.2.2 that, if g < H or h < H, then gH - hH ⇔ g - h.

Proof. Assume g < H or h < H. We know that g - h ⇒ gH - hH. Now assume that
gH - hH. If h ∈ H, then by (CQ1) on G/H we also have g ∈ H, which contradicts the
assumption. Therefore, we have h < H. If g ∈ H then by convexity of H we must have
g - h. If g < H, then by formula (†), we must have g - h. �

In Section 4.1.4, we saw that an order is not a C-q.o., but that there is a natural
connection between orders and o-type C-q.o.’s, given by the map P. The fact that P is
surjective allows us to see orders as special case of C-q.o.’s. Through P we will be able to
transform certain statements concerning C-q.o.’s into statements about orders. In other
words, we can use C-q.o.’s as a uniform approach to ordered and valued groups.

Theorem 4.2.4
Let - be a C-q.o. on G and v : G→ Γ ∪ {∞} a valuation. The following statements are
equivalent:

(1) ∀γ ∈ Γ, Gγ is convex in (G,-).

(2) ∀γ ∈ Γ, Gγ is convex in (G,-).

(3) ∀γ ∈ Γ, - induces a C-q.o. -γ on Bγ := Gγ/Gγ , which is given by the formula
gGγ - hGγ ⇔ (g ∈ Gγ) ∨ (h < Gγ ∧ g - h).
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(4) v is compatible with -.

Moreover, V = G (respectively O = G) if and only if for all γ ∈ Γ, every element of Bγ is
v-type (respectively o-type).

Proof. By Lemma 2.7.18, we know that (1)⇔(2). By Lemma 2.7.19, (1)⇔(4). By Lemma
2.7.18, (2) holds if and only if Gγ is convex in Gγ . By Proposition 4.2.2, this holds if and
only if (3) holds. �

4.2.2 Baer-Krull theorems for groups

We saw that an obstacle for the existence of a Baer-Krull theorem for compatible q.o.’s is
the fact that compatible q.o.’s are not stable under lifting (see Section 3.2). The class
C-q.o.’s does not suffer from the same problem.

Definition 4.2.5
Let (G, v) be a valued group with value chain Γ. Assume that for each γ ∈ Γ, Bγ := Gγ/Gγ
is endowed with a C-q.o. -γ . We say that the family (-γ)γ∈Γ has the q.o-conjugation
property if for each γ ∈ Γ and each z ∈ G, the canonical homomorphism Gγ/Gγ →
Gγ

z
/Gγz induced by conjugation by z (see Remark 2.2.5(d)) is quasi-order-preserving.

Note that in the abelian setting, the q.o.-conjugation property is always satisfied.
However, we can easily give a non-abelian example where it fails:

Example 4.2.6
Let -o be the C-q.o. induced by the usual order of the additive group Q and let -v
be any valuational q.o. on the multiplicative group Q∗. Define α : Q∗ → Aut((Q,+))
by α(a)(b) = ab. Set G := Q∗ nα Q. Define v : G → {1, 2,∞} as follows: v(a, b) =

1 if a , 1.
2 if a = 1 ∧ b , 0.
∞ if (a, b) = (1, 0).
We have G2/G2 � Q and G1/G1 � Q∗, but the family ((Q,-o), (Q∗,-v)) does not

have the q.o.-conjugation property. To see this, take z := (−1, 0). By conjugation, z
induces the automorphism a 7→ −a on Q, which does not preserve -o.

The q.o.-conjugation property ensures the existence of a lifting (see Definition 2.7.12):

Proposition 4.2.7
Let (G, v) be a valued group with value chain Γ. Assume that for each γ ∈ Γ, Bγ := Gγ/Gγ
is endowed with a C-q.o. -γ . If the family (-γ)γ∈Γ has the q.o.-conjugation property,
then the family (-γ)γ∈Γ admits a unique C-q.o. lifting to G, which is the C-q.o. -
defined by the formula

g - h⇔ (gGγ -γ hGγ , where γ = min(v(g), v(h))).

Proof. Let - denote the binary relation on G defined by the formula g - h⇔ (gGγ -γ
hGγ , where γ = min(v(g), v(h))). Note that this formula makes sense because, if γ =
min(v(g), v(h)), then g, h ∈ Gγ , so gGγ , hGγ ∈ Bγ .
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Claim 1: For any g, h ∈ G, we have g - h⇒ v(h) ≤ v(g).

Proof. Set γ := min(v(g), v(h)) and assume g - h. Assume for a contradiction that
v(h) > γ. Then we have v(g) = γ and hGγ = 1. But since g - h, the definition of -
implies gGγ -γ hGγ = 1. Since -γ satisfies (CQ1), this implies gGγ = 1 i.e g ∈ Gγ ,
hence γ < v(g), which is a contradiction. Therefore, v(h) = γ, hence v(h) ≤ v(g). �

We now show that - is a q.o. - is reflexive and total because -γ is reflexive and
total for all γ ∈ Γ. Let us show transitivity. Assume that f - g and g - h hold. Set
γ := min(v(f), v(g)) and δ := min(v(g), v(h)). By Claim 1, we have δ = v(h) ≤ v(g) =
γ ≤ v(f). In particular, we have δ = min(v(f), v(h)). Assume first that δ < v(f). We
then have fGδ = 1, which by (CQ1) implies fGδ -δ hGδ. Assume now that v(f) = δ.
It then follows that δ = γ. By definition of -, the relations f - g and g - h imply
fGδ -δ gGδ and gGδ -δ hGδ. By transitivity of -δ, this implies fGδ -δ hGδ. In any case,
we have fGδ -δ hGδ, which proves f - h. This proves that - is a q.o. Let us now prove
that it is a C-q.o. Let g , 1. We then have γ := v(g) < v(1). Moreover, since -γ satisfies
(CQ1), we have 1Gγ � gGγ (because g < Gγ). By definition of -, this means 1 � g, which
proves that - satisfies (CQ1). Now take g, h, z ∈ G with g - h. By Claim 1, we have
v(h) ≤ v(g). Set γ := v(h). We have gGγ -γ hGγ . Since -γ satisfies (CQ2), this implies
gh−1Gγ -γ h−1Gγ . By definition of a valuation, we have v(gh−1) ≥ min(v(g), v(h)) and
v(h) = v(h−1), hence γ = min(v(h−1), v(gh−1)). It then follows from the definition of
- that gh−1 - h−1. This proves that - satisfies (CQ2). By definition of a valuation,
v(g) ≥ v(h) implies v(gz) ≥ v(hz) = γz, so γz = min(v(gz), v(hz)). Since the family
(-γ)γ∈Γ satisfies the q.o-conjugation property, gGγ -γ hGγ implies gzGγz -γz hzGγz .
This implies gz - hz, which proves that - satisfies (CQ3).

Now let us show that - is indeed a lifting of (-γ)γ∈Γ. By Claim 1, v is compatible
with -. Since - is a C-q.o., it then follows from Theorem 4.2.4 that - induces a C-
q.o. on each quotient Bγ := Gγ/Gγ , and the induced C-q.o. is given by the formula
gGγ - hGγ ⇔ (g ∈ Gγ)∨ (h < Gγ ∧ g - h). We just have to show that this q.o. coincides
with -γ . Let g, h ∈ Gγ . Assume that gGγ -γ hGγ ∧ g < Gγ holds. Since -γ satisfies
(CQ1), this implies h < Gγ . It follows that v(g) = v(h) = γ, and then by definition of
- on G it follows that g - h. This proves gGγ -γ hGγ ⇒ (g ∈ Gγ) ∨ (h < Gγ ∧ g - h).
Conversely, assume that (g ∈ Gγ) ∨ (h < Gγ ∧ g - h) holds. If g ∈ Gγ , then since
-γ satisfies (CQ1) we have gGγ -γ hGγ . Assume now that g < Gγ . Then we have
(h < Gγ ∧ g - h). h < Gγ implies γ = v(h), and by assumption we have γ ≤ v(g), so
γ = min(v(g), v(h)). By definition of -, the relation g - h then implies that gGγ -γ hGγ .
This proves that gGγ -γ hGγ ⇔ (g ∈ Gγ) ∨ (h < Gγ ∧ g - h), which proves that - is a
lifting of (-γ)γ∈Γ.

Now let us show uniqueness of the lifting. Let -∗ be a C-q.o. lifting of (-γ)γ∈Γ
and let us show that -∗ and - coincide. Let g, h ∈ G and set γ := min(v(g), v(h)).
Because - and -∗ are liftings of (-δ)δ∈Γ, they both induce the q.o. -γ on Bγ . Because
- and -∗ are C-q.o.’s, it then follows from Proposition 4.2.2 that gGγ -γ hGγ ⇔ g ∈
Gγ ∨ (h < Gγ ∧ g - h) and gGγ -γ hGγ ⇔ g ∈ Gγ ∨ (h < Gγ ∧ g -∗ h). It follows that
g ∈ Gγ ∨ (h < Gγ ∧ g - h) ⇔ g ∈ Gγ ∨ (h < Gγ ∧ g -∗ h). If g, h < Gγ , it immediately
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follows that g - h⇔ g -∗ h. Now note that, by Theorem 4.2.4, Gγ is convex in (G,-)
and in (G,-∗), so it is an initial segment in both C-q.o.g.’s. Since γ = min(v(g), v(h)),
we either have g < Gγ or h < Gγ . If h ∈ Gγ , then g - h would imply g ∈ Gγ by convexity,
which is a contradiction. Similarly, g -∗ h cannot hold. Now assume Assume g ∈ Gγ .
Then h < Gγ , which by convexity implies g - h and g -∗ h. This shows that we always
have g - h⇔ g -∗ h. �

Remark 4.2.8: Because of (CQ3), the q.o.-conjugation property is necessary to ensure
that the lifting is a C-q.o.

As a special case of lifting we can define a C-q.o. on semi-direct products:

Proposition 4.2.9
Let (G,-G), (H,-H) be two C-q.o.g.’s and let α : G→ Aut(H) such that for any g ∈ G,
α(g) preserves -H . Define a q.o. - on G nα H by
(g1, h1) - (g2, h2)⇔ (g1 -G g2) ∧ (g2 , 1 ∨ (g2 = 1 ∧ h1 -H h2)). Then - is a C-q.o.

Proof. Set F := G nα H, Γ := {1, 2} and define v : F → Γ ∪ {∞} as follows:

v(g, h) :=


1 if g , 1.
2 if g = 1 , h.
∞ if g = h = 1.

This defines a valuation on F . We have F2 � {1}, F 2 = F1 = {1} ×H and F 1 = F .
Now take h1, h2 ∈ H � F 2/F2 with h1 -H h2 and z = (g, h) ∈ F . Since H is normal in F ,
we have F 2/F2 = F 2z/F2z . We have hzi = (α(g)(hi))h for i = 1, 2. By assumption, α(g)
preserves -H , hence α(g)(h1) -H α(g)(h2). By (CQ3), it then follows that hz1 -H hz2.
This proves that the isomorphism F 2/F2 → F 2z/F2z induced by z preserves -H . Now
note that G � F 1/F1, so F 1/F1 is endowed with a C-q.o. -G defined by (g1, 1).F1 -G
(g2, 1).F1 ⇔ g1 -G g2. Take (g1, 1).F1, (g2, 1).F1 ∈ F 1/F1 with (g1, 1).F1 -G (g2, 1).F1.
By definition, we have ((gi, 1).F1)z = (gi, 1)z.F1 = (ggi , hα(ggi )(h−1)).F1 = (ggi , 1).F1.
Because (g1, 1).F1 -G (g2, 1).F1, it follows from (CQ3) on G that (gg1 , 1) -G (gg2 , 1),
hence ((g1, 1).F1)z -G ((g2, 1).F1)z. This proves that the isomorphism F 1/F1 → F 1z/F1z

induced by z preserves -G. Thus, the hypothesis of Proposition 4.2.7 are satisfied.
Now note that f1 - f2 is equivalent to (min(v(f1), v(f2)) = 1 ∧ f1F1 -G f2F1) ∨
(min(v(f1), v(f2)) = 2 ∧ f1F2 -H f2F2) and apply Proposition 4.2.7.

�

Another special case of lifting is the valuational product that we defined in Definition
2.7.14:

Proposition 4.2.10
Let (Bγ ,-γ)γ∈Γ be a family of C-q.o. groups index by a totally ordered set Γ. Then the
valuational product of the family (Bγ ,-γ)γ∈Γ is a C-q.o. group.

Proof. Set H := H
γ∈Γ

Bγ , and let v be the usual valuation on H. Let us show that the
family (-γ)γ∈Γ has the q.o.-conjugation property. Take z = ∑

γ∈Γ zγ and g = ∑
γ∈Γ gγ
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both in H. Set δ := v(g). By definition of H
γ∈Γ

Bγ , we have gz = ∑
γ(gγ)zγ , hence

v(gz) = δ. It follows that Hδz/Hδz = Hδ/Hδ = Bδ. Now note that the automorphism
induced by conjugation by z on Bδ is the map h 7→ hzδ . Since -δ satisfies (CQ3), it
immediately follows that the automorphism of Bδ induced by conjugation by z preserves
the C-q.o. Therefore, by Proposition 4.2.7, (-γ)γ∈Γ admits a C-q.o. lifting to H which is
given by the formula: g - h⇔ (gGγ -γ hGγ , where γ = min(v(g), v(h))). This formula
coincides with the definition of the valuational product. �

Unlike compatible q.o.’s, we proved in Proposition 4.2.7 that, modulo the q.o.-
conjugation property, the class of C-q.o.’s is stable under lifting. This allows us to state
a Baer-Krull theorem for C-q.o.’s. For any group G, EC(G) denotes the set of all C-q.o.’s
on G, and if v is a valuation, then EvC(G) denotes the set of all C-q.o.’s - of G such that
v is compatible with -:
Theorem 4.2.11 (Baer-Krull for C-q.o.’s)
Let (G, v) be a valued group. The map:

EvC(G) ←→ {elements of ∏
γ∈Γ EC(Bγ) with the q.o.conj. property}

- 7−→ (-γ)γ∈Γ,
where -γ denotes the q.o. induced by - on the quotient Bγ := Gγ/Gγ , is a bijection.

Moreover, for a fixed -, we have G = V (respectively, G = O) if and only if for all γ ∈ Γ,
every element of (Bγ ,-γ) is v-type (respectively, o-type).
Proof. If -∈ EvC(G), then it follows from Theorem 4.2.4 that for all γ, -γ induces a
C-q.o. on Gγ/Gγ . Moreover, it follows from (CQ3) that the family (-γ)γ∈Γ has the
q.o.-conjugation property. Therefore, the map given in the theorem is well-defined.
Thanks to Proposition 4.2.7, we know that this map is bijective. The last statement
follows directly from Proposition 4.2.2. �

Since valuational q.o.’s are in particular C-q.o.’s, we have as an immediate corollary:
Theorem 4.2.12
Let (G, v) be a valued group. The map:

{refinement w of v } ←→ { family (wγ)γ∈Γ of valuations with the conj. property}
w 7−→ (wγ)γ∈Γ,

where wγ : Bγ → w(Gγ\Gγ)∪{∞} is defined by wγ(gGγ) := w(g) for any g ∈ Gγ\Gγ
and wγ(1) :=∞, is a bijection.
Proof. Note that a valuational C-q.o. - is a refinement of v if and only if v is compatible
with -. Let φ denote the map from Theorem 4.2.11. It follows directly from the last
statement of Theorem 4.2.11 and from Proposition 4.1.16 that a C-q.o. - is valuational
if and only if the induced q.o.’s -γ are all valuational. Therefore, if we restrict φ to the
class of valuational C-q.o.’s, we obtain the bijection that we want.

�

For any group G, let Eo(G) denote the set of group orders on G, and Evo (G) the set of
orders ≤ on G such that v is compatible with ≤. Using the map P from Section 4.1.4
and using Theorem 3.2.2, we obtain an analog for abelian ordered groups:
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Theorem 4.2.13
Let (G, v) be an abelian valued group. The map:

Evo (G) ←→ ∏
γ∈Γ Eo(Bγ)

≤ 7−→ (≤γ)γ∈Γ,
where each ≤γ is the order induced by ≤ on the quotient Gγ/Gγ , is a bijection.

Proof. Theorem 3.2.2 allows us to define the map:
φ : Evo (G) ←→ ∏

γ∈Γ Eo(Bγ)
≤ 7−→ (≤γ)γ∈Γ,

, where ≤γ denotes the order induced by ≤ on Bγ .

The map φ is clearly injective, we just have to show that it is surjective. Let (≤γ)γ ∈∏
γ∈Γ Eo(Bγ). For each γ, let -γ∈ P−1(≤γ). By Theorem 4.2.11, we can lift (-γ)γ to G

and obtain a C-q.o. -. Set P := P(-). Since the lifting preserves the type of elements,
we see that every element of (G,-) is o-type and that (P ∩Gγ)/Gγ = Pγ for all γ ∈ Γ. It
follows from Proposition 4.1.19 that P is a positive cone of G. Since (P ∩Gγ)/Gγ = Pγ
for all γ ∈ Γ, P is indeed a lifting of the family (Pγ)γ∈Γ. �

4.2.3 q-sections and the classical Baer-Krull Theorem

We now want to show how one can recover the classical Baer-Krull theorem from Theorem
4.2.13. We fix a valued field (K, v) with value group (G,≤). Note that if (≤g)g∈G is a
family of group orders on the quotients Kg/Kg, then Theorem 4.2.13 only tells us that
this family lifts to a group order on (K,+), but there is no reason to think that this
lifting is a field order in general. In order to understand the connection between Theorem
4.2.13 and the classical Baer-Krull theorem, we need to characterize the families (≤g)g∈G
whose lifting to K is a field order.

We can achieve this by using the the notion of q-section developed in [Pre84]. A
q-section of the valued field (K, v) is a map s : G→ K such that s(0) = 1, v(s(g)) = g
and s(g + h) ≡ s(g)s(h) mod K2. It was proved in [Pre84] that every valued field
admits a q-section. We now fix a q-section s of (K, v). Then for any g ∈ G, the map
φg : Kv → Kg/Kg, a+K0 7→ s(g)a+Kg defines an isomorphism from Kv to Kg/Kg. If
we take a family (≤g)g∈G of orders on the quotients Kg/Kg then the behavior of the φg’s
with respect to ≤g’s will tell us if the lifting of (≤g)g is a field order:

Proposition 4.2.14
Let (≤g)g∈G be a family of group orders on the quotients Kg/Kg. Then the lifting of
(≤g)g to K is a field order if and only if the following conditions are satisfied:

(1) ≤0 is a field order of Kv.

(2) there exists a group homomorphism ε : G→ {−1, 1} such that for any g ∈ G, φg is
order-preserving when ε(g) = 1 and φg is order-reversing when ε(g) = −1.

Proof. Denote by ≤ the lifting. If ≤ is a field order, then ≤0 must be a field order
because it is the order induced by ≤ on Kv; moreover, we can define ε(g) = 1 if
0 < s(g) and ε(g) = −1 if s(g) < 0, and one easily sees that ε has the desired property.
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Assume now that conditions (1) and (2) are satisfied. We already know from Theorem
4.2.13 that ≤ is a group order of (K,+), so ≤ is a field order if and only if the set of
positive elements of (K,≤) is stable under multiplication. By definition of ≤, this is
equivalent to saying that for any a, b ∈ K with g = v(a) and h = v(b), 0 ≤g a + Kg

and 0 ≤h b + Kh imply 0 ≤g+h ab + Kg+h. Note that since s is a q-section, we have
ab+Kg+h = d2φg+h(φ−1

g (a+Kg)φ−1
h (b+Kh)) for some d ∈ K; in particular, ab+Kg+h

has the same sign as φg+h(φ−1
g (a+Kg)φ−1

h (b+Kh)). Now assume for example that φg
is order-preserving and φh order-reversing. If a+Kg and b+Kh are both positive,we
then have φ−1

g (a + Kg) ≤0 0 and 0 ≤0 φ−1
h (b + Kh). Since ≤0 is a field order, this

implies that φ−1
g (a+Kg)φ−1

h (b+Kh) ≤0 0. Since ε is a group homomorphism, then φg+h
is order-reversing, hence 0 ≤g+h φg+h(φ−1

g (a + Kg)φ−1
h (b + Kh)). The other cases are

treated similarly.
�

As a consequence of Proposition 4.2.14 we have the following variant of the Baer-Krull
theorem:

Theorem 4.2.15 (Baer-Krull, variant)
Let O be the set of field orders of Kv and E the set of group homomorphisms from G to
{−1, 1}. Then O×E is in bijection with the set of families (≤g)g∈G whose lifting to K is
a field order.

Proof. Assume that ≤0∈ O and ε ∈ E are given. Then define ≤g on Kg/Kg as follows:
If ε(g) = 1, define a+Kg ≤g b+Kg ⇔ φ−1

g (a+Kg) ≤0 φ
−1
g (b+Kg); if ε(g) = −1, define

a+Kg ≤g b+Kg ⇔ φ−1
g (a+Kg) ≥0 φ

−1
g (b+Kg). By Proposition 4.2.14, this family of

orders lifts to a field order on K. Conversely, assume (≤g)g∈G is given and denote by ≤
the lifting of (≤g)g∈G to K. Then the existence of ε is given by Proposition 4.2.14. �

Now assume that (πi)i∈I is a family of elements of K such that (v(πi) + 2G)i∈I is
an F2-Basis of G/2G. In order to recover Theorem 2.3.1 from Theorem 4.2.15, we need
to show that the set of homomorphisms from G to {−1, 1} is in bijection with the set
of maps from I to {−1, 1}. First note that we can see I as a subset of G if we identify
i ∈ I with v(πi). Thus, any homomorphism ε : G→ {−1, 1} canonically induces a map
I → {−1, 1} (just take ε|I). For the converse, note that every g ∈ G has a decomposition
g = ∑

i∈I niv(πi) + 2h, where h ∈ G, ni ∈ {0, 1} and ni = 1 only for finitely many i. If
ε : I → {−1, 1} is given, we can extend ε to a homomorphism G → {−1, 1} as follows.
For g = ∑

i∈I niv(πi) + 2h, let lg be the number of i ∈ I such that ni = 1 and ε(i) = −1.
Set ε(g) := −1 if lg is odd and ε(g) := 1 if lg is even.

4.3 Structure of C-q.o.g.’s

4.3.1 Examples of C-q.o.’s

In this section, we describe the structure of an arbitrary C-q.o.g. (G,-). We start by
giving five different examples of C-q.o.’s. Examples (a),(c) and (d) are obtained by direct
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application of 4.2.10, and example (e) is proved from example (d) with Proposition 4.2.9.
To prove example (b), one needs to use Proposition 4.3.32 on the C-q.o. group (G,-)
from example (a) with g := (−1, 0).

Examples 4.3.1
Set G := Z2. We let -o denote the C-q.o. induced by the usual order of Z (which is
characterized in Proposition 4.1.17) and -v the C-q.o. induced by the trivial valuation
on Z.

(a) Choose -1:=-o and -2:=-v. The valuational product (G,-) of the family
((Z,-1), (Z,-2)) is given by :
(0, 0) � ({0} × (Z\{0}),-t) � (−N×Z,-t) � (N×Z,-),
where -t denotes the trivial q.o. and - is defined on N × Z as follows: (a, b) -
(c, d)⇔ a ≤ c. In this example, - is valuational on {0} ×Z and order-type-like on
(Z\{0} ×Z). The set of v-type elements is {0} ×Z, the set of o−-type elements is
−N×Z and the set of o+-type elements is N×Z.

(b) Coarsen the C-q.o. of the previous example by declaring that
({0} × (Z\{0}),-t) ∼ (−N×Z,-t). This new C-q.o. is now given by:
(0, 0) � ((−N0 ×Z)\{(0, 0)},-t) � (N×Z,-).
All elements of G in this example have the same type as in (a).

(c) Define -1=-2=-o. The valuational product of the family ((Z,-1), (Z,-2)) is now
given by :
(0, 0) � ({0} × −N,-t) � ({0} ×N,≤) � (−N×Z,-t) � (N×Z,-),
where ≤ is the natural order of Z and - is defined on N × Z as follows: (a, b) -
(c, d) ⇔ a ≤ c. Here - is order-type-like on {0} × Z and on (Z\{0} × Z). The
set of o−-type elements is {0} × −N ∪ −N × Z, the set of o+-type elements is
{0} ×N ∪N×Z, and (0, 0) is the only v-type element.

(d) Let - be the C-q.o. of example (a) on G. Let (H,-H) be the valuational product
of the family ((G,-)n∈Z) (Z-many copies of (G,-)). Here the C-q.o alternates
infinitely many times between order-type-like parts and valuational-like parts. More
precisely: Let wH denote the valuation wH : H → Z ∪ {∞}, h 7→ min supp(h).
For any h = ∑

n∈Z gn ∈ H (gn ∈ G) with m := wH(h), then h is v-type if and
only if gm ∈ {0} × Z, h is o−-type if and only if gm ∈ −N × Z and h is o+-
type if and only if gm ∈ N × Z. For any m ∈ Z, -H is valuational-like on
{h = ∑

n∈Z gnτn ∈ H | wH(h) = m, gm ∈ {0} × Z} and is order-type-like on
{h = ∑

n∈Z gnτn ∈ H | wH(h) = m, gm ∈ (Z\{0})×Z}.

We can also give a non-abelian example:
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(e) Let (H,-H) be as in the previous example. For any k ∈ Z, let αk be the k-th shift
on H (i.e αk(

∑
n∈Z gn) = ∑

n∈Z gn−k). This is a group automorphism of H. Set
F := Z nα H and define -F by:
(k, h1) -F (l, h2)⇔ (k -v l) ∧ (l , 0 ∨ (l = 0 ∧ h1 -H h2)). Here the elements of H
have the same type as in (d). Elements of the form (l, h) with l , 0 are v-type.

We see on each of these examples that G can be partitioned into strictly convex
subsets on each of which - is fundamental-like. We will show that this is true for any
arbitrary C-q.o.g. As the terminology and Examples 4.3.1 suggest, and similarly to what
happened with compatible q.o.’s in chapter 3, it will turn out that - is valuational-like
on the set of v-type elements and order-type-like around o-type elements.

Example (b) deserves a special attention. The C-q.o. in example (b) seems counter-
intuitive. Indeed, we would expect the C-q.o. to separate o-type elements from v-type
elements, but we see that (0, 1) ∼ (−1, 1). This means that the C-q.o. does not distinguish
between the v-type element (0, 1) and the o-type element (−1, 1). This phenomenon is
what we call “welding”.

Definition 4.3.2
We say that (G,-) is welded at h, or that h is a welding point of (G,-), if there
exists an element g such that g and h are of different type and g ∼ h. We then say that
g and h are welded. We say that (G,-) has welding if G has a welding point, and we
say that (G,-) is welding-free if it has no welding. Finally, a welding class of (G,-)
is a ∼-class containing a welding point.

We will see that the existence of welding in certain groups makes things technically
slightly more difficult but does not fundamentally change the structure of a C-q.o.g. It
is important to note that welding only concerns v-type and o−-type elements (but not
o+-type elements):

Proposition 4.3.3
Let (G,-) be a C-q.o. group. Then the set O+ is stable under “∼”.

Proof. This follows directly from Lemma 4.1.18. �

Proposition 4.3.4
Let (G,-) be a C-q.o. group and take g, h ∈ G. Assume that g and h are welded. Then
one of them is v-type and the other one is o+-type.

Proof. This follows directly from Proposition 4.3.3. �

Notation
If g ∈ O−, we set Wg := {h ∈ V | h ∼ g}, and if g ∈ V then we set
Wg := {h ∈ O− | h ∼ g}.

The following Proposition shows that example (b) cannot have been obtained directly
by lifting fundamental C-q.o.’s, as opposed to the other four examples:
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Proposition 4.3.5
Let (G,-) be a C-q.o. group. Assume that there is a valuation v : G→ Γ ∪ {∞} and a
family (-γ)γ∈Γ of fundamental C-q.o.’s on the quotients Bγ := Gγ/Gγ such that - is the
C-q.o. lifting of the family (-γ)γ∈Γ (see Proposition 4.2.7). Then (G,-) is welding-free.

Proof. Take g ∈ O−, and let h ∈ G with h ∼ g. Looking at the formula for - given
in Proposition 4.2.7, we see that g ∼ h implies v(g) = v(h). Set γ := v(g). It follows
from Proposition 4.2.2 that gGγ has the same type as g, so it is o-type. Since -γ is
fundamental, it follows that every element of Bγ is also o-type. It follows from Proposition
4.2.2 that hGγ has the same type as h, so h is o-type. This shows that there is no welding
in G. �

It follows from Proposition 4.3.5 that lifting is not sufficient to construct all C-q.o’s
from the fundamental ones. However, we will show that lifting and welding are sufficient
to construct any C-q.o. from the fundamental ones, as suggested by Examples 4.3.1.

4.3.2 Quotient by strictly convex subgroups

In order to decompose a C-q.o. groups into fundamental ones, we will consider quotients
on which - induces a fundamental C-q.o. However, because of the existence of welding,
it can happen that the subgroup which we need to consider is only strictly convex, and
not convex. This seems problematic at first. Indeed, Proposition 4.2.2 states that, if H
is not convex, then - does not induce a C-q.o. on G/H in the sense given in Definition
2.7.11. We solve this problem by showing that the formula given in Proposition 4.2.2
still makes sense when H is only strictly convex. The idea goes as follows: if - is a C-q.o.
such that H is strictly convex in (G,-), then we can refine - into a C-q.o -∗ in a way
that makes H convex in (G,-∗). We then know from Proposition 4.2.2 that -∗ induces
a C-q.o. on G/H. By abuse of terminology, we will then call this induced q.o. the C-q.o.
induced by - on G/H. Note however that, strictly speaking, this induced C-q.o. is not
the induced q.o. as defined in Definition 2.7.11.

Note that, because every convex subgroup is an initial segment, any non-convex
strictly convex subgroup of G is in case (iii) of Lemma 2.7.5. We need the following
Lemma:

Lemma 4.3.6
Let (G,-1) be a C-q.o.g. and let H be a strictly convex normal subgroup of (G,-1)
with convexity complement F , ∅. We are then in case (iii) of Lemma 2.7.5, so we have
H -1 F . Let -2 be the refinement of -1 defined by declaring that H �2 F . Then -2 is a
C-q.o. and H is -2-convex.

Proof. The fact that H is -2-convex is clear, as is the fact that 1 �2 x for every x ∈ G.
Since F , ∅, it follows from Lemma 2.7.5 that max(H),min(F ) are non-empty and
min(F ) ∼1 max(H). Note that the notation max(H) is unambiguous, since the max
of H in (G,-1) is the same as in (G,-2); similarly for min(F ). Now assume x -2 y
and take z ∈ G. We want to show xy−1 -2 y

−1 and xz -2 y
z. Since -1 is a coarsening
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of -2, we have x -1 y. Because -1 is a C-q.o., this implies xy−1 -1 y
−1 and xz -1 y

z.
Towards a contradiction, assume y−1 �2 xy

−1 . Because -1 and -2 coincide outside of
max(H) and min(F ), this implies y−1 ∈ max(H) and xy−1 ∈ min(F ). Since x -2 y ∈ H,
the -2-convexity of H then implies x ∈ H. This implies xy−1 ∈ H, which contradicts
xy−1 ∈ F . Therefore, we must have xy−1 -2 y

−1. By the same reasoning (using the fact
that H is normal), we get xz -2 y

z.
�

Lemma 4.3.7
Take the same notations as in Lemma 4.3.6. Both -1 and -2 induce a q.o. on G/H, and
for every g, h ∈ G\H we have gH -1 hH ⇔ gH -2 hH. In particular, the refinement of
-1 on G/H obtained by declaring 0 � πH(F ) is the C-q.o. -2.

Proof. Since H is convex in (G,-2), we already know from Proposition 4.2.2 that -2
induces a C-q.o. on G/H. Define -1 on G/H as in Definition 2.7.11, i.e. g1H -1 g2H ⇔
(∃h1, h2 ∈ H, g1h1 -1 g2h2). Since H is in case (iii) of Lemma 2.7.5, we have 1.H -1 gH
for every g ∈ G. The fact that gH -1 hH ⇔ gH -2 hH holds for every g, h < H
follows from the fact that -1 and -2 coincide on G\H. It follows immediately that -1
is transitive on G/H\{1.H}. Because H -1 (G\H), 1.H is minimal in (G/H,-1). We
then immediately have that -1 is transitive on G/H. This shows that -1 induces a q.o.
on G/H. Note however that 1.H ∼1 f.H for every f ∈ F , so (CQ1) is not satisfied.
However, because -1 and -2 coincide on G/H\{1.H}, then -2 is the refinement of -1
obtained by declaring that 1 � πH(F ). �

We can now show the following:

Proposition 4.3.8
Let H be a strictly convex normal subgroup of G. Then the following formula defines a
C-q.o. on G/H: gH - hH ⇔ (g ∈ H) ∨ (h < H ∧ g - h). Moreover, πH preserves the
type of elements in G\H.

Proof. Set -1:=- and consider the q.o. -2 as in Lemma 4.3.6. Since H is -2-convex,
we know from Proposition 4.2.2 that -2 induces a C-q.o. on G/H given by the formula:
gH - hH ⇔ (g ∈ H) ∨ (h < H ∧ g -2 h). We also know from Proposition 4.2.2 that
πH preserves the type of elements. It is easy to see that (g ∈ H) ∨ (h < H ∧ g -2 h)
is equivalent to (g ∈ H) ∨ (h < H ∧ g - h), since for any h < H and any g ∈ G,
g - h⇔ g -2 h. �

Remark 4.3.9: (i) By abuse of terminology, we call the C-q.o. - defined on G/H as
in Proposition 4.3.8 the C-q.o. induced by - on G/H. Note that - is different
from the q.o. induced by - on G/H as defined in Definition 2.7.11. If -∗ denote the
q.o. induced by - on G/H as defined in Definition 2.7.11, then - is the refinement
of -∗ obtained by declaring 1.H � g.H for every g ∈ G\H (this follows from Lemma
4.3.7).

90



Lehéricy Gabriel - Thèse de doctorat - 2018

(ii) If H is convex, then the induced C-q.o. on G/H really is the q.o. induced on G/H
as defined in Definition 2.7.11.

(iii) Note that, for any h < H and any g ∈ G, we have g - h⇔ gH - hH.

4.3.3 Type-components

In this section, we introduce the “type-components” Tg mentioned in the introduction
of this chapter. For g , 1, we want to find a set Tg which is the biggest strictly convex
subset of G containing g on which - is fundamental-like. If g ∈ O+, one can see that the
set of h ∈ O+ such that every element strictly between g and h are also o+-type is the
greatest strictly convex subset of o+-type elements containing g. We can define in the
same way such a “strictly convex closure” for an o−-type element or a v-type element.
Now, since by definition Tg contains g and g−1, in the o-type cases Tg cannot be this
closure. We will show that Tg is the union of the strictly convex closures of g and g−1.
In the v-type case the strictly convex closures of g and g−1 are equal. We also introduce
the set Gg which should be thought of as the set of elements of G which are “below” Tg .
We then introduce the set Gg which should be thought of as the set of elements which
are not bigger than Tg. We will show that Gg and Gg are subgroups. For proving the
properties of Tg, Gg, Gg, and the welding properties, it is more convenient to define Tg
by means of formulas with inequalities instead of strict inequalities. This motivates the
following definitions. For an element 1 , g ∈ G, we define the type-component Tg of g as
follows:

• If g ∈ V, then Tg := {1 , h ∈ V | there is no o+-type element between h and g}.

• If g ∈ O+, then T+
g := {h ∈ O+ | every element between g and h is o+-type}. We

then set T−g := (T+
g )−1 and Tg := T+

g

⋃
T−g .

• If g ∈ O−, then Tg := Tg−1 .

We also define two sets Gg and Gg as follows:

• If g ∈ V, then define Gg := {h | h � Tg}.

• If g ∈ O+, then define Gg := {h | {h, h−1} - g−1}.

• If g ∈ O−, then define Gg := Gg−1 .

In all cases we set Gg := Gg
⋃
Tg. For g = 1, we set Tg = Gg = Gg = {1}. We will show

later that Gg and Gg are actually subgroups of G (see Propositions 4.3.13 and 4.3.24).
Note that for any g ∈ G, 1 ∈ Gg, so Gg and Gg are non-empty.

Example 4.3.10
Let us have a look again at the groups given in Examples 4.3.1. Set g = (0, 1) and
h = (1, 0). In examples (a), (b) and (c) we have Tg = ({0} ×Z)\{(0, 0)}, T+

h = N×Z
and Th = (Z\{0})×Z. We also have Gg = {0}, Gg = Gh = {0} ×Z, Gh = G. It is easy
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to see that the q.o. induced on the quotients Gg/Gg and Gh/Gh are exactly the q.o’s -1
and -2 which we lifted to construct the q.o. on G. Note that the only difference between
cases (a) and (b) is that Tg, Th, Gh, Gg are convex in case (a) but are only strictly convex
in case (b) due to welding. Note also that in example (b), each element of the form
(x, y) with x < 0 is an o−-type welding point with (x, y) ∼ (0, z) for every z , 0. In
particular, there is an o−-type element (for example (−1, 0)) which is contained between
g and g−1, even though g−1 ∈ Tg. This explains why we restrict to o+-type elements in
the definition of Tg when g is v-type.

In the next two sections, we describe some properties of the sets Tg, Gg and Gg for
g , 1. As announced in the introduction, we are going to show that Tg is a maximal
subset of G with the properties that Tg is strictly convex and that - is fundamental-like
(of the same type as g) on Tg (see Propositions 4.3.11 and 4.3.23 ). We will also show
that Gg and Gg are subgroups of G and that Gg is normal in Gg. We first show these
properties for the case where g is o-type and then do the same for the case where g is
v-type.

Tg in the o-type case

We now want to describe Tg, Gg, Gg in the case where g , 1 is o-type. By definition of
Tg, we can assume without loss of generality that g ∈ O+. We recall that Wg−1 denotes
the set {h ∈ V | h ∼ g−1}, and that g−1 is a welding point if and only if Wg−1 , ∅. The
following proposition states the main properties of Tg:

Proposition 4.3.11 (Characteristics of Tg)
The set Tg has the following properties:

(1) Tg is right-convex in G with convexity complement cl(g−1)\Tg =Wg−1 .

(2) Tg is convex if and only if g−1 is not a welding point of G.

(3) Tg is the biggest strictly convex subset of G containing g with the following properties:

(i) Every element of Tg is o-type.
(ii) Tg contains exactly one class of o−-type elements, and this class is smaller than

every o+-type element.

(4) for any f1, f2, h ∈ T+
g , we have f1 - f2 ⇒ f1h - f2h ∧ hf1 - hf2.

Remark 4.3.12: (i) Proposition 4.3.11(3) basically says that Tg is the biggest strictly
convex subset of G containing g on which - is order-type-like.

(ii) It follows from Proposition 4.3.11(1) and from Lemma 2.7.5(ii) that
min(Tg) = cl(g−1) ∩ Tg.

(iii) If g−1 is not a welding point, then we can replace “strictly convex” by “convex” in
Proposition 4.3.11(3).
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(iv) Example 4.3.1(b) shows that Tg is not always convex.

(v) It is interesting to note that property (4) in 4.3.11 is the property satisfied by
ordered groups (see axiom (OG) in Section 2.2).

We now state the main properties of Gg and Gg:

Proposition 4.3.13 (Quotient for o-type elements)
Both Gg and Gg are subgroups of G. Moreover, Gg is convex in G and Gg is the smallest
normal strictly convex subgroup of Gg such that the C-q.o. induced by - on Gg/Gg is
order-type.

Remark 4.3.14: If g−1 is not a welding point, then Gg is actually convex. However,
Example 4.3.1(b) shows that Gg is not convex in general. We see that the existence of
welding makes the structure of G less smooth, since it prevents the type-components
from being convex.

Our goal is now to prove Propositions 4.3.11 and 4.3.13. We start by characterizing
the elements of T+

g in the next lemma:

Lemma 4.3.15
For any h ∈ G, h ∈ T+

g if and only if h ∈ O+ and h−1 ∼ g−1. In particular, g ∈ T+
g and

T−g ⊆ cl(g−1).

Proof. Assume h ∈ T+
g . h ∈ O+ by definition of Tg. If h−1 � g−1, then h−1 � g−1 � g.

By Lemma 4.1.11(ii), this implies h � g−1 � g, so there is an o−-type element between
h and g, which contradicts h ∈ Tg. If g−1 � h−1, then by the same reasoning we get
g � h−1 � h, which also contradicts h ∈ Tg. This proves that h−1 ∼ g−1. Conversely,
assume that h is o+-type and h−1 ∼ g−1. We want to show that every f between h and g
is o+-type. Since f is between h and g and since h−1 ∼ g−1, we either have h−1 � f - h
or g−1 � f - g. By Lemma 4.1.18, this implies that f is o+-type. �

As a direct consequence of these two lemmas, we have that the q.o is order-type-like
on Tg:

Proposition 4.3.16
We have Tg ⊆ O. Moreover, Tg contains exactly one class of o−-type elements, which is
T−g . Moreover, T−g � T+

g and there is no h such that T−g � h � T+
g

Proof. The fact that Tg ⊆ O is a direct consequence of the definition of Tg. The fact
that there is exactly one class of o−type elements is a consequence of Lemma 4.3.15. If h
satisfies T−g � h - T+

g , then by Lemma 4.1.18 h ∈ T+
g , so we don’t have h � T+

g . �

We can now show Proposition 4.3.11:

proof of 4.3.11. We first prove (1). It is clear from the definition of T+
g and from

Proposition 4.3.3 that T+
g is convex. We also know from Proposition 4.3.16 that min(Tg) =

T−g ⊆ cl(g−1) and that there is no element strictly between T−g and T+
g . It follows that
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Tg ∪ cl(g−1) is convex. By Lemma 2.7.5(ii), it follows that Tg is right-convex and that
Fg := cl(g−1)\Tg is the convexity complement of Tg. By definition of Wg−1 , we have
Wg−1 ⊆ Fg. To show equality, we just need to show that every element of Fg is v-type.
Let h ∈ Fg. Then h ∼ g−1. By Proposition 4.3.3, h < O+. If h were o−-type, then by
Lemma 4.3.15 we would have h ∈ T−g , which is excluded, so h < O−. Thus, h ∈ V. This
shows that Wg−1 = cl(g−1)\Tg is the convexity complement of Tg. It follows that Tg is
convex if and only if Wg−1 = ∅. This in turn holds if and only if g−1 is not a welding
point. This proves (2). Now let us prove (3). We know by Proposition 4.3.16 that Tg
satisfies (i) and (ii). It only remains to prove that there is no strictly convex set bigger
than Tg satisfying (i) and (ii). Towards a contradiction, let S ! Tg be such a set and take
h ∈ S\Tg. Because Tg is right-convex and because T−g � T+

g , we either have T+
g � h or

h - T−g . Assume first that T+
g � h. By condition (ii), we must then have h ∈ O+ and

h−1 - T−g . Let g - f - h. We have h−1 � f - h. By Lemma 4.1.18, this implies f ∈ O+.
Thus, every element between g and h is o+-type, so h ∈ T+

g , which is a contradiction.
Assume that h - T−g . By condition (ii), we must have h ∈ O− and T−g � h−1. Because
Tg is right-convex, it follows that T+

g � h−1. We then have h � g - h−1. By 4.1.18, this
implies g−1 ∼ h. By Lemma 4.3.15, this implies h−1 ∈ T+

g : contradiction. (4) is a direct
consequence of Proposition 4.1.14, since h−1 / f2. �

We mentioned in Remark 4.3.12 that the q.o. - on Tg is order-type-like. In fact, the
only difference between the structure of Tg and the group in Proposition 4.1.17 is that -
is not an order on T+

g (see for example T+
h in Example 4.3.10). However, we have the

following:

Lemma 4.3.17
Let f, h ∈ T+

g and f ∼ h. Then fh−1 ∈ Gg.

Proof. By applying (CQ2) to the inequalities f - h - f we obtain fh−1 - h−1 and
hf−1 - f−1. By Lemma 4.3.15, g−1 ∼ h−1 ∼ f−1, hence {fh−1, hf−1} - g−1, hence
fh−1 ∈ Gg. �

Intuitively, we see from Lemma 4.3.17 that the C-q.o. induced by - on the quotient
Gg/Gg will look exactly like the C-q.o. of Proposition 4.1.17. It still remains to show
that Gg and Gg have the desired properties:

Proposition 4.3.18
We have Gg = {h � g−1} ∪Wg−1 . In particular, Gg is left-convex in G, and it is convex
if and only if g−1 is not a welding point. This in turn holds if and only if Tg is convex
in G. Moreover, if Gg is not convex, then its convexity complement is T−g and we have
Wg−1 = max(Gg).

Proof. Let h ∈ Gg. Then in particular {h, h−1} - g−1. If h ∼ g−1, then we have
h ∈ cl(g−1) = T−g ∪ Wg−1 . Since h−1 - g−1, we cannot have h ∈ T−g (otherwise we
would have h−1 ∈ T+

g ), so h ∈ Wg−1 . Conversely, assume h � g−1. By Lemma 4.1.11(ii),
this implies h−1 � g−1, hence h ∈ Gg. Assume h ∈ Wg−1 . Then h ∼ g−1 and h is
v-type, so h−1 ∼ h - g−1, hence h ∈ Gg. If Wg−1 = ∅, then Gg = {h � g−1} is clearly
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convex. Now assume that Wg−1 , ∅. By definition of Wg−1 , we have f ∼ g−1 for every
f ∈ Wg−1 , hence h - f for every f ∈ Wg−1 and h ∈ Gg. Since Wg−1 ⊆ Gg, it follows
that Wg−1 = max(Gg). Now take any f ∈ Wg−1 . We then have f ∈ Gg, f ∼ g−1, but
g−1 < Gg, so Gg is not convex. Moreover, we have T−g = cl(f)\Gg. By Lemma 2.7.5(iii),
this implies that T−g is the convexity complement of Gg. �

Proposition 4.3.19
Gg is an initial segment of G.
Proof. It follows from Proposition 4.3.18 that Gg ∪ T−g is an initial segment of G. Since
T+
g is convex and since there is no element strictly contained between T−g and T+

g , it
follows that Gg = Gg ∪ T−g ∪ T+

g is an initial segment.
�

We can now show Proposition 4.3.13:

proof of 4.3.13. Let h1, h2 ∈ Gg. We have h1 - g−1 and {h2, h
−1
2 } - g−1 � g, so we

can apply Propositions 4.1.14 and 4.1.12 and get h1h
−1
2 - g

−1h−1
2 ∼ g−1. By a similar

argument, we also have h2h
−1
1 - g−1, hence h1h

−1
2 ∈ Gg. This proves that Gg is a

subgroup of G. Now let us show that Gg is a subgroup of G. Note that by Propositions
4.3.16, 4.3.18 and 4.3.19 we have Gg - T−g � T+

g . Since Gg is moreover an initial segment
of Gg, it follows that an element h ∈ G is in Gg if and only if there exists f ∈ T+

g with
h - f . Let h1, h2 ∈ Gg. There exists f ∈ T+

g with {h1, h2} - f . Assume h2 ∼ f . By
convexity of T+

g , this implies that h2 ∈ T+
g . We then have h1 - h2. By (CQ2), this implies

h1h
−1
2 - h

−1
2 � h2 ∈ T+

g , hence h1h
−1
2 ∈ Gg. Assume h2 � f . By Proposition 4.1.14,

this implies h1h
−1
2 - fh

−1
2 . If fh−1

2 - f
−1, then h1h

−1
2 - f ∈ T+

g , hence h1h
−1
2 ∈ Gg.

Assume then that f−1 � fh−1
2 . By Lemma 4.1.11 (i), h2 � f implies f−1 ∼ h2f

−1, hence
h2f

−1 � fh−1
2 which means that fh−1

2 is o+-type. Since f ∈ T+
g , we have f−1 ∼ g−1 by

Lemma 4.3.15. We thus have g−1 ∼ h2f
−1 and fh−1

2 is o+-type. By Lemma 4.3.15, we
then have fh−1

2 ∈ T+
g . Since h1h

−1
2 - fh

−1
2 , it follows that h1h

−1
2 ∈ Gg. This proves that

Gg is a subgroup of G. Now let us show that Gg is normal in Gg. Let h ∈ Gg and z ∈ Gg.
By (CQ3), we have {(h−1)z, hz} - (g−1)z. It is enough to show that (g−1)z - g−1. Note
that by (CQ3), conjugation preserves types, so (g−1)z is o−-type. Since Gg is a group,
we have (g−1)z ∈ Gg, and since there is no o−-type element above g−1 in Gg we must
have (g−1)z - g−1.

Now let us prove that the C-q.o. induced on Gg/Gg is order-type. By Proposition
4.3.8, the canonical projection πGg from Gg to Gg/Gg preserves the type of elements.
Moreover, by definition of Gg, we have πGg(Tg) = Gg/Gg\{1.Gg}. It then follows from
Proposition 4.3.16 that (Gg/Gg,-) satisfies the conditions of Proposition 4.1.21, so -
is order-type on Gg/Gg. Now assume that H  Gg is another strictly convex normal
subgroup of Gg. Take h ∈ Gg\H. By Proposition 4.3.18, we either have h ∈ Wg−1 or
h � g−1. If h ∈ Wg−1 , then h ∈ V. Since πH preserves the types of elements, πH(h) is
also v-type. But then condition (1) of Proposition 4.1.21 fails for (Gg/H,-). If h � g−1,
then condition (2) of Proposition 4.1.21 fails for (Gg/H,-). In any case, this shows that
- is not order-type on Gg/H. �
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Tg in the v-type case

Assume now that g , 1 is v-type.

Lemma 4.3.20
We have g ∈ Tg.

Proof. It follows from Proposition 4.3.3. �

Lemma 4.3.21
Let h ∈ O. Then either Th � Tg or Tg - Th holds.

Proof. By Proposition 4.3.11, Th is right-convex and contains an o+-type element f .
Assume first that g - h and let g′ ∈ Tg, h′ ∈ Th. Assume for a contradiction that h′ � g′.
Since Tg ⊆ V and Th ⊆ O, we have g′ < Th. By right-convexity of Th, g - h implies
g - Th and h′ � g′ implies Th � g′. Therefore, we have g - f - g′. But since f ∈ O+,
this contradicts the fact that g′ ∈ Tg. Therefore, we must have g′ - h′. Since this holds
for arbitrary g′ ∈ Tg and h′ ∈ Th, this means Tg - Th.

Now assume that h - g and let g′ ∈ Tg, h′ ∈ Th. Assume for a contradiction that
g′ - h′. By right-convexity of Th, we have g′ - Th � g, hence g′ - f � g, which contradicts
g′ ∈ Tg. This proves that h′ � g′. This proves Th � Tg.

�

Proposition 4.3.22
Define Fg := {h ∈ O− | h ∼ max(Tg)} if max Tg , ∅ and Fg := ∅ otherwise. Then Tg
is left-convex with convexity complement Fg. In particular, Tg is convex if it has no
maximum.

Proof. Assume Tg is not convex. Then there exists h1, h2 ∈ Tg and f < Tg such that
h1 - f - h2. If f were v-type, then since f < Tg there would an o+-type element between
g and f . This would imply that there is an o+-type element either between g and h1 or
between g and h2, which is a contradiction. For the same reason f cannot be o+-type.
Thus, f ∈ O−. It follows Lemma 4.3.21 that Tg - f , so h2 - f , hence h2 ∼ f . It follows
that h2 ∈ max(Tg). Now let us show that Tg ∪ cl(h2) is convex. Let f1, f2 ∈ Tg ∪ cl(h2)
and f1 - f - f2. With the same reasoning as above, f cannot be o+-type so it must
either be v-type or o−-type. If it is v-type, then f ∈ Tg. If it is o−-type, then f ∼ h2. �

We can now state a v-type analogue of Proposition 4.3.11:

Proposition 4.3.23
The set Tg is the biggest strictly convex subset of G\{1} containing g such that every
element of Tg is v-type. If G is welding-free, then Tg is even convex.

Proof. Let S ! Tg be strictly convex and let h ∈ S\Tg with h , 1 be v-type. Since
h < Tg, then by definition of Tg there must be an o+-type element f between g and h.
By Proposition 4.3.3, we have f / h and f / g, so f is strictly between g and h. Since S
is strictly convex, it follows that f ∈ S. Thus, S must contain o-type elements. �
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We now want to establish the v-type analogue of Proposition 4.3.13.

Proposition 4.3.24
Both Gg and Gg are subgroups of G, Gg is strictly convex in G with convexity complement
Fg and Gg is convex in G. Moreover, Gg is normal in Gg.

Proof. Gg is clearly an initial segment by definition, so it is convex. Moreover, we know
that Tg is left-convex (Proposition 4.3.22) and that there is no element strictly contained
between Gg and Tg (by definition of Gg), so it follows immediately that Gg = Gg ∪ Tg is
left-convex. We also know that Fg is the convexity complement of Tg (Proposition 4.3.22)
so it is also the convexity complement of Gg.

Let us show that Gg is a group. Let f1, f2 ∈ Gg and h ∈ Tg, so {f1, f2} � h. Assume
h - f1f

−1
2 . We then have f1 / f1f

−1
2 . Applying Proposition 4.1.14, we get f−1

1 h - f−1
2 .

However, by Proposition 4.1.12, we have f−1
2 � h and f−1

1 h ∼ h, so this is a contradiction.
Thus, we must have f1f

−1
2 � h. Since h is arbitrary in Tg, this means f1f

−1
2 ∈ Gg. Now

let us show that Gg is a group. Let f1, f2 ∈ Gg. This implies that there is h ∈ Tg with
{f1, f2} - h. If h ∼ f2, then it follows from the left-convexity of Tg that f2 ∈ Tg, so
f2 ∈ V and we have f1 - f2. By (CQ2), it follows that f1f

−1
2 - f

−1
2 ∼ h ∈ Tg. If h / f2,

then f1 - h implies f1f
−1
2 - hf

−1
2 by Proposition 4.1.14. Since h ∈ V, f2 � h implies

h ∼ hf−1
2 by Proposition 4.1.12, hence f1f

−1
2 - h. In any case we have f1f

−1
2 - h, which

means f1f
−1
2 ∈ Gg ∪ Fg. We can show with the same reasoning that f2f

−1
1 - h. This

implies that f1f
−1
2 < Fg. Indeed, if f1f

−1
2 were in Fg, then it would be o−-type, so we

would have h ∼ f1f
−1
2 � f2f

−1
1 .

Take 1 , h ∈ Gg and z ∈ Tg. Since h < Tg, there exists an o+-type element f between
h and g. We then have hz - fz - gz ∈ Gg, so there is an o+-type element between hz
and gz, hence hz ∈ Gg. �

Proposition 4.3.25
The group Gg is the smallest normal convex subgroup of Gg such that the C-q.o. induced
by - on Gg/Gg is valuational.

Proof. By Proposition 4.3.8, πGg preserves the type of elements. It follows that every
element of Gg/Gg is v-type. By Proposition 4.1.16, this implies that - is valuational on
Gg/Gg. Now let H be a normal convex subgroup of Gg strictly contained in Gg. Take
h ∈ Gg\H. If h ∈ V, then since h < Tg, there must be an o+-type element f between
h and g. By convexity of H, we have f < H. This shows that Gg\H must contain an
o-type element. It then follows that Gg/H contains an o-type element which is not 1.
By Proposition 4.1.16, this shows that - is not valuational on Gg/H. �

Remark 4.3.26: (i) As happens in the o-type case, welding is the only thing prevent-
ing Tg and Gg from being convex. If G has no welding point, then we can replace
“strictly convex” by “convex” in Proposition 4.3.24.

(ii) In the o-type case as well as in the v-type case, it can happen that Gg and Gg are
not normal in G (see Example 4.3.36 below).
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Type-valuation

We can now show that the Tg’s form a partition of G:
Proposition 4.3.27
The following holds for any g, h ∈ G:
g ∈ Th ⇔ h ∈ Tg ⇔ Tg = Th ⇔ Tg ∩ Th , ∅⇔ Gg = Gh ⇔ Gg = Gh.
Proof. Assume g ∈ Th. If h, g are v-type, then we use Proposition 4.3.23. We know that
Tg is the biggest strictly convex subset of G containing g whose every element is v-type.
Since Th is strictly convex and only contains v-type elements and g ∈ Th, it follows that
Th ⊆ Tg. This implies h ∈ Tg. By a similar argument, it also follows that Tg ⊆ Th, hence
Tg = Th. The case where they are o-type is similar by using Proposition 4.3.11. This
proves the first two equivalences. The third one follows immediately: if Tg ∩Th , ∅, then
there is f ∈ G with f ∈ Tg ∩ Th, which implies Tg = Tf = Th. Assume Tg = Th. In the
v-type case we obviously have Gh = Gg by definition of Gg. If they are o+-type, then
g−1 ∼ h−1. But then, for any f ∈ G, {f, f−1} - g−1 is equivalent to {f, f−1} - h−1,
hence Gg = Gh. Assume Gg = Gh. Without loss of generality g - h. Since Gg = Gh,
we have g < Gh. Note that there is no element strictly contained between Gh and Th
(otherwise, there would be an element f with f < Gh = Gh ∪ Th and 1 � f � h. This
would contradict the fact that Gh is strictly convex). Thus, we have g ∈ Th, hence
Th = Tg, which also implies Gg = Gh. Finally, assume Gg = Gh, i.e Tg ∪Gg = Th ∪Gh,
and let us show g ∈ Th. Towards a contradiction, assume g < Th. We already proved that
this implies h < Tg. Since Tg ∪ Gg = Th ∪ Gh, we have g ∈ Gh and h ∈ Gg. It follows
that g - h and h - g, i.e h ∼ g. If h ∈ V were true, then by definition of Gh in the
v-type case we would have g � h, which is a contradiction. For the same reason, we
cannot have g ∈ V. Therefore, we have g, h ∈ O. By definition of Gg in the o-type case,
and since h ∈ Gg, it follows that {h, h−1} - {g, g−1}. Similarly, since g ∈ Gh, we have
{g, g−1} - {h, h−1}. But these inequalities imply h ∼ h−1, which contradicts h ∈ O.

�

We have thus reached the goal we announced in the introduction: we showed that G
is partitioned into a family of sets on each of which the C-q.o is fundamental-like. Our
next objective is to reformulate this statement by showing that - can be obtained by
lifting fundamental C-q.o’s. To do this we need to define a valuation on G whose fibers
are the type-components. We first notice that - naturally induces an order on the set of
type-components:
Proposition 4.3.28
Define ≤∗ on the set of all type-components by Tg ≤∗ Th ⇔ Tg = Th ∨ Tg - Th. This is a
total order on the set of all type-components of G.
Proof. The fact that ≤∗ is total follows from the fact that the type-components are
strictly convex and pairwise disjoint. The relation ≤∗ is clearly reflexive and transitive,
let us prove that is is antisymmetric. If Tg - Th - Tg, then all elements of Tg ∪ Th are
equivalent to one another. It follows that h, g must both be v-type. Since g ∼ h, this
implies Tg = Th. �
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Remark 4.3.29: If S is a subset of G which contains elements s, t ∈ S such that
s � t, then S - S does not hold (remember that S - T means that s - t for any pair
(s, t) ∈ S × T ). Hence the condition Tg = Th does not imply Tg - Th. Therefore, the
condition “Tg = Th” in the definition of ≤∗ is essential for reflexivity.

Proposition 4.3.30
Set Γ := {Tg | g ∈ G} and let ≤ be the reverse order of the order ≤∗ given in Proposition
4.3.28. We define a valuation on G called the type-valuation associated to - by

v : G→ (Γ,≤)
g 7→ Tg.

Proof. Clearly, T1 is a maximum of (Γ,≤) and v(g) = v(g−1) for any g ∈ G. Let g, h ∈ G
with v(g) ≤ v(h). By definition of ≤, it follows that h ∈ Gg. Since Gg is a group, we
then have gh ∈ Gg. This implies Tgh = Tg or Tgh - Tg, which means v(g) ≤ v(gh), hence
min(v(g), v(h)) ≤ v(gh). Now let z ∈ G. If Th - Tg, then in particular h - g, so hz - gz.
This implies v(gz) ≤ v(hz). Now assume Tg = Th. If g, h are both v-type, then so are gz
and hz (this follows from (CQ3)). Since h ∈ Tg, there is no o+-type element between g
and h. Therefore, by (CQ3), there cannot be an o+-type elements between gz and hz.
This proves Tgz = Thz . The same kind of argument shows T+

g = T+
h in the case where

g, h are both o+-type. If one of them is o−-type, then take their inverse and we are back
to the o+-type case. �

Remark 4.3.31: For any g ∈ G, we have Gg = Gv(g) and Gg = Gv(g), i.e. Gg = {h ∈
G | v(h) ≥ v(g)} and Gg = {h ∈ G | v(h) > v(g)}.

4.3.4 Structure theorems

We now want to summarize the results of Section 4.3.3 into a structure theorem of
C-q.o.g.’s. We saw that Example 4.3.1(b) is not obtained by lifting fundamental C-q.o.’s.
This forces us to introduce another way of constructing C-q.o.’s, which we call welding.
We will then show that every C-q.o. is obtained from fundamental C-q.o.’s by lifting and
welding.

We now introduce the welding construction. Let g ∈ O−, and assume that the
maximum Mg of Gg is non-empty. We noted in Proposition 4.3.18 that, if Wg , ∅, then
Mg = Wg, and so, by Proposition 4.3.11(1), we have Mg ⊆ cl(g). If Wg = ∅, then by
Proposition 4.3.18 we have Gg = {h ∈ G | h � g}. In any case, there is no element
strictly between Mg and cl(g). This means that we can coarsen - by joining the sets
cl(g) and Mg. In other words, we define a coarsening -2 of - by declaring that h ∼2 f
for any f, h ∈Mg ∪ cl(g) and h -2 f ⇔ h - f whenever h <Mg ∪ cl(g) or f <Mg ∪ cl(g).
Note that, in example 4.3.1(b), if we set g := (−1, 0), then we have Gg = {0} ×Z and
Mg = {0} × (Z\{0}) ⊆ cl(g). Therefore, it can happen that Mg ⊆ cl(g), in which case
nothing changes. But if Tg is convex, then by 4.3.18 we have Mg ∩ cl(g) = ∅, and then
-2 is different from -. If we apply this coarsening operation simultaneously at each gz
for z ∈ G, then we will obtain a new C-q.o., as the next proposition shows:

99



Lehéricy Gabriel - Thèse de doctorat - 2018

Proposition 4.3.32 (Construction by welding)
Let (G,-) be a C-q.o.g. and g ∈ O− such that Mg := max(Gg) is non-empty. Then for
any z ∈ G, Mgz := max(Ggz) is also non-empty. We can then define a coarsening -2 of
- by declaring Mgz ∼2 g

z for every z ∈ G. Moreover, this coarsening is a C-q.o.

Proof. Note that by (CQ3), we have g � g−1 ⇒ gz � (g−1)z = (gz)−1, hence gz ∈ O−.
The fact that Mgz is non-empty is also a direct consequence of (CQ3). It also follows
from (CQ3) that Wg , ∅ ⇔ Wgz , ∅. Note also that if Wg , ∅, then by Proposition
4.3.18 we have Mg =Wg, so we already have Mg ∼ g. By (CQ3), this implies Mgz ∼ gz
for all z ∈ G. It then follows that -=-2, so there is nothing to prove. Therefore, we can
assume without loss of generality that Wgz = ∅ for all z ∈ G.

Set -1:=-. We want to show that -2 is a C-q.o. Let x, y, z ∈ G with x -2 y. If x -1 y,
then we have xy−1 -1 y

−1 and xz -1 y
z. Since -2 is a coarsening of -1, this implies

xy−1 -2 y
−1 and xz -2 y

z. Now assume y �1 x. This can only happen if there is w ∈ G
with y ∈ Mgw and x ∼1 g

w. Since we assumed that Wgw = ∅, it follows that x ∈ O−.
By maximality of y, we have y−1 -1 y. We thus have {y, y−1} -1 x �1 x

−1. By Lemma
4.1.11(iii), this implies xy−1 ∼1 x. By (CQ′2), y−1 �1 y would imply y �1 y

2, which
would contradict the maximality of y. It follows that y ∈ V. We thus have xy−1 ∼1 g

w

and y−1 ∈ Mgw . By definition of -2, this implies xy−1 ∼2 y
−1. Moreover, we have

yz ∈Mgwz and xz ∼1 g
wz, which also implies xz ∼2 y

z. �

We see that, if we lift a family of fundamental C-q.o.’s as in Proposition 4.2.7 and
then apply welding, then the q.o. which we obtain is again a C-q.o. The next theorem
states that any C-q.o. is obtained through this process:

Theorem 4.3.33 (Structure theorem of a C-q.o. group)
Let (G,-) be a C-q.o. group. There exists a valuation v on G with value set Γ ∪ {∞},
called the type-valuation associated to -, such that the following holds:

(1) For any γ ∈ Γ, Gγ and Gγ are strictly convex subgroups of (G,-).

(2) The C-q.o. -γ induced by - on Bγ := Gγ/Gγ is a fundamental C-q.o.

(3) If γ ≤ δ, if -γ ,-δ are both valuational, then there exists α between γ and δ such
that -α is order-type.

Moreover, the q.o. - can be obtained by lifting the family (-γ)γ∈Γ to G and then
applying (possibly several) weldings if necessary.

Proof. We already defined the type-valuation v in Proposition 4.3.30. Following Remark
4.3.31, we will write Gg and Gg instead of Gv(g) and Gv(g). We will also write -g instead
of -v(g). (1) and (2) follow from Propositions 4.3.13, 4.3.24 and 4.3.25, (3) follows from
4.3.23. Denote by -∗ the lifting of (-γ)γ∈Γ to G. Note that an element g ∈ G is v-type
(respectively, o−-type) with respect to - if and only if it is v-type (respectively, o−-type)
with respect to -∗ (this follows easily from Propositions 4.3.13 and 4.3.25 and from
the definition of the the lifting). Therefore, we can use the notations V and O without
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ambiguity. We first show that - is a coarsening of -∗. Let g, h ∈ G with g -∗ h. By
definition of -∗, we either have v(h) > v(g) or v(g) = v(h) ∧ gGg -g hGg. In the first
case we have by definition of v: g - h. In the second case, since Gh = Gg, we have
h < Gg. It then follows from Remark 4.3.9(iii) that g - h. This proves that - is a
coarsening of -∗. Now let g, h ∈ G be such that g - h but h �∗ g. We will show that
h ∈ V, g ∈ O and h ∈ max(Gg,-∗). It will then follow that - is obtained from -∗ by
welding g and max(Gg,-∗). By definition of -∗, h �∗ g means either v(h) > v(g) or
v(g) = v(h) and hGg �g gGg. By Remark 4.3.9(iii), the latter case would imply h � g,
so we must have v(h) > v(g) i.e h ∈ Gg. This implies h - g, so g ∼ h. If h were o-type,
then by Proposition 4.3.13 Gh would be convex with respect to -. The inequality g - h
would then imply g ∈ Gh, which contradicts v(g) < v(h). Therefore, h ∈ V. Assume
for a contradiction that g ∈ V. Since v(h) > v(g), we have g < Th. By definition of
Th, it follows that there is f ∈ O+ between g and h. But since g ∼ h, it follows that
f ∼ h. This contradicts Lemma 4.1.18. Therefore, g ∈ O. Since h ∼ g, h is in the
convexity complement of Tg. By Proposition 4.3.18, we thus have h ∈ max(Gg,-). Now
let f ∈ Gg with h -∗ f . Since - is a coarsening of -∗, we then have h - f , hence h ∼ f
by maximality of h. Now h -∗ f implies v(f) ≤ v(h) and f ∈ Gg implies v(f) > v(g).
Since h ∈ max(Gg,-), there is no element strictly contained between Th and Tg, so we
must have v(h) = v(f). By definition of -h (see Proposition 4.3.8), it then follows from
h ∼ f that hGh ∼h fGh, hence h ∼∗ f by definition of -∗. This shows that h is maximal
in (Gg,-∗). Thus, the only point on which - and -∗ disagree are welding points, so - is
obtained from -∗ by welding. �

Corollary 4.3.34
Let G be a group and - a q.o. on G. Then - is a C-q.o. if and only if it is obtained
by lifting a family of fundamental C-q.o.’s with the q.o.-conjugation property and then
possibly welding.
Proof. If - is a C-q.o., it follows from Theorem 4.3.33 that - is obtained by lifting a
family of fundamental C-q.o.’s and then possibly welding. It then follows from (CQ3) that
this family has the q.o.-conjugation property. The converse follows from Propositions
4.2.7 and 4.3.32. �

Remark 4.3.35: (i) The C-q.o.-groups (Bγ ,-γ) in Theorem 4.3.33 are called the
fundamental components of (G,-).

(ii) Let -∗ denote the lifting of (-γ)γ∈Γ. Then (G,-∗) is welding-free. More precisely,
-∗ is the unique welding-free C-q.o. which has the same type-valuation as (G,-).
-∗ is called the unwelding of -.

(iii) If (G,-) is welding-free, then - and -∗ coincide.

(iv) In Theorem 4.3.33, Γ becomes a colored chain with two colors O and V : say γ ∈ V
(respectively, γ ∈ O) if g ∈ V (respectively, g ∈ O) for all g ∈ G with v(g) = γ. By
(3), this colored chain satisfies the condition:

(γ ∈ V ∧ δ ∈ V ∧ γ < δ)⇒ ∃α, (γ < α < δ ∧ α ∈ O). (CC)
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The two-colored chain (Γ,≤,O,V) is called the type-chain of the C-q.o. group
(G,-).

(v) condition (CC) says that Γ cannot have two consecutive v-type elements. However,
example 4.3.1(b) shows that Γ can have two consecutive o-type elements.

Example 4.3.36
We take notations from Examples 4.3.1. We are going to give an explicit definition
to the type-valuation associated to the C-q.o’s -H and -F of examples (d) and (e).
We already defined a valuation wH : H → Z on H. Define the valuation vG on G by

vG(a, b) =


1 if a , 0.
2 if a = 0 , b.
∞ if a = b = 0.

Now set Γ := Z× {1, 2} and order Γ lexicographically,

i.e (x, y) ≤ (x′, y′)⇔ (x < x′ ∨ (x = x′ ∧ y ≤ y′)). Define vH : H → Γ by v(∑n∈Z gn) :=
(k, vG(gk)), where k = wH(∑

n∈Z gn). Then vH is a valuation on H such that, for any
g ∈ G, Tg = {h ∈ H | vH(h) = vH(g)}. If we assimilate an element γ of Γ with v−1

H ({γ}),
it follows that vH is the type-valuation associated to -H . Now we extend vH to a
valuation vF : F → Γ ∪ {a,∞}, where a is a new element such that a < Γ, as follows:

vF (k, h) =
{
a if k , 0.
vH(h) if k = 0.

If we assimilate elements of Γ ∪ {a} with their vF -fiber, then vF is the type-valuation
associated to -F . Now take z := (−1,∑n∈Z(0, 0)) ∈ F and f := (0,∑n∈Z gn) ∈ F ,
where g0 = (1, 0) and gn = (0, 0) for n , 0. We have vF (f) = (0, 1) but vF (z + g − z) =
(−1, 1) < vF (f). In particular, F (0,1) = F(−1,2) is not normal in F . This shows that the
groups Gγ and Gγ of theorem 4.3.33 are not always normal in G.

We can also reformulate Theorem 4.3.33 in terms of C-relations:

Theorem 4.3.37
Let (G,C) be a C-group. There exists a valuation v : G → Γ ∪ {∞} such that the
following holds:

(1) For any γ ∈ Γ, C induces a C-relation Cγ on the quotient Gγ/Gγ defined by the
formula Cγ(fGγ , gGγ , hGγ)⇔ fh−1 < Gγ ∧ (gh−1 ∈ Gγ ∨ C(f, g, h)).

(2) For each γ ∈ Γ, Cγ is a fundamental C-relation.

(3) If γ ≤ δ, if Cγ , Cδ are both valuational, then there exists α between γ and δ such
that Cα is order-type.

Finally, we show that any two-colored chain satisfying condition (CC) of Remark
4.3.35 can be realized as the type-chain of some C-q.o. group.

Proposition 4.3.38
Let (Γ,≤,O,V) be a two-colored chain satisfying condition (CC). Then there exists a
C-q.o. group (G,-) such that (Γ,≤,O,V) is the type-chain of (G,-).
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Proof. For every γ ∈ Γ, let (Bγ ,-γ) be :

1. A valuationally quasi-ordered group if γ ∈ V.

2. A group endowed with an order-type C-q.o. if γ ∈ O.

Now let (G,-) be the valuational product of the family ((Bγ ,-γ))γ∈Γ. It follows from
Proposition 4.2.10 that (G,-) is a C-q.o. group. By construction, the type-chain of
(G,-) is (Γ,≤,O,V). �

4.4 C-minimality
The object of this section is to describe C-minimal groups. More precisely, we want to
characterize C-minimal groups in term of their type-valuations and of their fundamental
components. Roughly speaking, we prove that, at least in the abelian case, welding-free
C-minimal groups are obtained as a finite valuational product of C-minimal fundamental
C-groups.

It will be convenient to work with a weaker notion of minimality:

Definition 4.4.1
Given a C-group (G,C), we say that (G,C) is weakly C-minimal if every subset of G
definable with parameters in the language {1, .,−1 , C} is quantifier-free definable with
parameters in the language {C}.

Therefore, (G,C) is C-minimal if and only if every C-group which is elementarily
equivalent to (G,C) is weakly C-minimal. We will use the following characterization of
C-minimality:

Proposition 4.4.2
Let (G,C) be a C-group. Then (G,C) is C-minimal if and only if there exists a weakly
C-minimal ω-saturated C-group which is elementarily equivalent to (G,C).

Proof. If (G,C) is C-minimal, then any ω-saturated elementary extension of (G,C)
is C-minimal. Conversely, assume that there exists a weakly C-minimal ω-saturated
C-group (H,C) with (G,C) ≡ (H,C). Let (F,C) be a C-group with (F,C) ≡ (G,C)
and let us show that (F,C) is weakly C-minimal. Let ā ⊆ F and let A ⊆ F be defined
by the formula φ(x, ā). By saturation, there exists a partial elementary embedding
ι : ā ↪→ H. Because H is weakly C-minimal, there exists a quantifier-free formula ψ(x, ȳ)
in the language {C} such that H � ∃ȳ∀x(φ(x, ι(ā)) ⇔ ψ(x, ȳ)). Since ι is a partial
elementary embedding, we also have F � ∃ȳ∀x(φ(x, ā)⇔ ψ(x, ȳ)). This proves that A is
quantifier-free definable in {C}. �

Given a C-group (G,C) and - the induced C-q.o., it clearly follows from Definition
4.1.2 and Proposition 4.1.4 that - is quantifier-free definable in {1, C} and that C is
quantifier-free definable in {.,−1 ,-}. This allows us to use C-q.o.’s to study model-
theoretic properties of C-groups. Therefore, we will study C-groups in the language
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L := {1, .,−1 ,-}, where - will be interpreted by a C-q.o. If A ⊆ G, then LA denotes the
language L to which we add parameters in A. For us, “definable” means “definable in
L with parameters”. If we want to say that a set is definable in L without parameters,
then we say that it is ∅-definable. If φ(x, ȳ) is an L-formula and ā ⊆ G, then we denote
by φ(G, ā) the set {g ∈ G | G � φ(g, ā)}. All structures considered in this section are
C-q.o. groups. When there is no ambiguity on the C-q.o., we write G ≡ H to mean that
G and H are elementarily equivalent as L-structures. If F is a strictly convex normal
subgroup of G, then the quotient G/F is always endowed with the C-q.o. induced by the
C-q.o. of G (see Proposition 4.3.8). If (G1,-1), . . . , (Gn,-n) is a family of C-q.o. groups,
then the direct product ∏n

i=1Gi will always be endowed with the valuational product of
the family (-i)i∈{1,...,n} (see Definition 2.7.14). Note that, if (F,-F ), (H,-H) are C-q.o.
groups and G := H × F , then F is convex in (G,-), we have H � G/F , and the C-q.o.
induced by - on G/F coincides with -H .

Note that every atomic formula in L is equivalent to a formula of the form P (x̄) - Q(x̄),
where P (x̄), Q(x̄) are terms of the language of groups. Indeed, by (CQ1), the formula
P (x̄) = 1 is equivalent to P (x̄) - 1. Remember that equality between formulas is denoted
by “≡”. For g ∈ G, we keep the notations Tg, Gg, Gg defined in Section 4.3.3.

4.4.1 Macpherson and Steinhorn’s results revisited

We first want to interpret the results on C-minimal groups given in [MS96] in view of
our structure theorem 4.3.33. Note that the C-relations considered in [MS96] are dense,
i.e they satisfy the extra axioms: x , y ⇒ ∃z, (z , y ∧ C(x, y, z)) and ∃x∃y, y , x. The
authors of [Del11] and [AN98] described how to obtain the canonical tree associated
to a given C-structure (see Proposition 1.5 in [Del11] and Theorem 12.4 in [AN98]). If
(M,C) is a C-structure, then we can define a partial quasi-order (i.e. a reflexive and
transitive binary relation, not necessarily total) - on the set M2 by (x, y) - (u, v) ⇔
¬C(u, x, y) ∧ ¬C(v, x, y). We then define the canonical tree (T,≤) of (M,C) as the
quotient T := M2/ ∼ endowed with the partial order ≤ induced by -. To simplify
notations, we will refer to elements of T by one of their representatives in M2. Note that
(x, y) = (y, x) for any x, y.

If (G,C) is a C-group with canonical tree T, then we see that G induces a right action
on T by (x, y).g := (xg, yg). Note that the partial order on T is compatible with this
action in the sense that (x, y) ≤ (u, v) ⇒ (x, y).g - (u, v).g (this follows directly from
the fact that C is compatible). In [MS96], Macpherson and Steinhorn described dense
C-minimal groups by looking at the orbits of this action. They distinguished three cases:

1. All orbits are antichains.

2. One orbit is a non-trivial chain.

3. No orbit is a non-trivial chain and there exists one non-trivial orbit which is not an
antichain.

Now let - be the C-q.o. associated to C. We want to translate this trichotomy into
the language of C-q.o. groups. More precisely, we want to see how the type of elements
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x and y influences the orbit of (x, y). Note that the partial order ≤ of T is given by
(x, y) ≤ (u, v) ⇔ {uy−1, vy−1} - xy−1. We first want to describe the structure of the
tree T in the order-type case:

Lemma 4.4.3
Assume (G,-) is an order-type C-q.o.g. and set C := {(x, y) ∈ T | x , y}. Then C is a
non-trivial chain and an orbit under the action of G.

Proof. Denote by ≤ the underlying order on G. Let (x, y), (u, v) ∈ C. Note that since
(x, y) = (y, x), we can assume that x < y and u < v. We have (x, y) ≤ (u, v) ⇔
{uy−1, vy−1} - xy−1. Because O+ ∪ {1} is the positive cone of (G,≤) (see Proposition
4.1.19), x < y is equivalent to xy−1 ∈ O−. Since - is trivial on O− (see Proposition
4.1.21), {uy−1, vy−1} - xy−1 is equivalent to uy−1, vy−1 ∈ O− ∪ {1}. This in turn is
equivalent to u ≤ y ∧ v ≤ y. Since u < v, this is equivalent to v ≤ y. Thus, we have
(x, y) ≤ (u, v)⇔ v ≤ y and it follows that C is a chain. Note that it also shows:
(∗) (u < v ∧ x < y ∧ y = v)⇒ (x, y) = (u, v).
Now we want to show that (x, y) and (u, v) are in the same orbit. Set g := y−1v. Note
that by definition of order-type C-relations in Example 2.6.1(a), < is compatible with
the group operation, so we have xg < yg. Moreover, we have u < v and yg = v. By (∗),
this implies that we have (x, y).g = (u, v). �

Lemma 4.4.4
Let (G,-) be a C-q.o.g. (not necessarily minimal) and g ∈ G. Let (T,≤) be the
canonical tree associated to Gg and (T′,≤′) the canonical tree associated to Gg/Gg.
If x, y, u, v ∈ Tg are such that xy−1, uv−1 ∈ Tg, then (x, y) ≤ (u, v) if and only if
(xGg, yGg) ≤′ (uGg, vGg).

Proof. Since xy−1 < Gg, it follows from Remark 4.3.9(iii) that {uy−1, vy−1} - xy−1 if
and only if {uy−1Gg, vy

−1Gg} - xy−1Gg. �

Lemma 4.4.5
Let (G,-) be a C-q.o.g. Let x ∈ G and y ∈ Gx. The following holds:

(i) If xy−1 ∈ V, then the orbit of (x, y) under the action of G is an antichain.

(ii) If xy−1 < Tx, then the orbit of (x, y) under the action of Gx is not a chain.

(iii) The orbit of (x, y) under the action of Gx is a non-trivial chain if and only if x ∈ O
and xy−1 ∈ Tx.

Proof. (i) Assume that xy−1 is v-type and let g ∈ G. We want to show that (x, y)
and (xg, yg) are either incomparable or equal. Assume (xg, yg) ≤ (x, y). This
means {xg−1y−1, yg−1y−1} - xy−1. Since xy−1 is v-type, yg−1y−1 - xy−1 implies
ygy−1 - xy−1 (indeed, if yg−1y−1 is v-type, then ygy−1 ∼ yg−1y−1. If yg−1y−1

is o-type, then we have yg−1y−1 ∈ Gxy−1 . Since Gxy−1 is a group, this implies
ygy−1 ∈ Gxy−1 , hence ygy−1 - xy−1). Moreover, if we conjugate the inequality
yg−1y−1 - xy−1 by xy−1, then we obtain xgx−1 - xy−1 ∼ yx−1. By (CQ2),
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xgx−1 - yx−1 implies xgy−1 - xy−1. Thus, we have {xgy−1, ygy−1} - xy−1, which
means (x, y) ≤ (xg, yg), so (x, y) and (xg, yg) are equal. Now if we assume that
(x, y) ≤ (x, y).g instead of (x, y).g ≤ (x, y) at the beginning, then by compatibility
of the action we have (x, y).g−1 ≤ (x, y), which brings us back to the previous case.

(ii) Assume xy−1 < Tx. Since x < Gx and x, y−1 ∈ Gx, it follows that y < Gx,
hence y ∈ Tx. We thus have xy−1 � {x, y−1}. Taking g := y−1, we cannot
have ygy−1 - xy−1 and we also cannot have xg−1y−1 - xy−1. Therefore, neither
(x, y) ≤ (xg, yg) nor (xg, yg) ≤ (x, y) is true.

(iii) If the orbit of (x, y) under Gx is a chain, then by (ii) we must have xy−1 ∈ Tx.
By (i), x cannot be v-type. Conversely, assume x is o-type with xy−1 ∈ Tx. Since
Gx/Gx is order-type (Proposition 4.3.13), and since xGx , yGx, it follows from
Lemma 4.4.3 that the orbit of (xGx, yGx) under the action of Gx/Gx is a non-trivial
chain. It then follows from lemma 4.4.4 that the orbit of (x, y) under Gx is also a
non-trivial chain.

�

Proposition 4.4.6
Let (G,-) be a C-q.o.g. with type-valuation v : G→ (Γ ∪ {∞},≤) The following holds:

(1) All orbits of T are antichains if and only if G = V.

(2) There exists an orbit of T which is a chain if and only if there exists x ∈ O such that
v(x) = min(Γ).

Proof. If every orbit is an antichain, then by Lemma 4.4.5(iii) every element of G must
be v-type (otherwise we can always choose x, y ∈ O with xy−1 ∈ Tx, for example choose
any x ∈ O+ and y := x2). The converse follows from 4.4.5(i). Now assume that x ∈ O
and v(x) = min(Γ). Take y ∈ Tx with xy−1 ∈ Tx. It follows from Lemma 4.4.5(iii)
that the orbit of (x, y) under G is a chain. Conversely, assume there is an orbit of an
element (x, y) which is a chain. Since (x, y) = (y, x), we can assume without loss of
generality that y - x, hence y ∈ Gx. By Lemma 4.4.5(iii), this implies in particular
that x is o-type with xy−1 ∈ Tx. Assume that there is some g < Gx. We then have
xgy−1, ygy−1, xg−1y−1, yg−1y−1 < Gx, so neither (x, y) ≤ (xg, yg) nor (xg, yg) ≤ (x, y)
can be true. This contradicts the fact the the orbit of (x, y) is a chain. Therefore, Gx = G,
which means v(x) = min(Γ). �

Proposition 4.4.6 allows us to translate Macpherson and Steinhorn’s approach into
the language of C-q.o. groups. The case where all orbits of T are antichains corresponds
to the case where - is valuational. The case where one orbit is a chain corresponds
to a C-q.o. group having an order-type-like final segment, i.e. the case where Γ has a
minimum γ such that x ∈ O for every x ∈ G with v(x) = γ. Finally, the case where no
orbit is a chain and some orbits are not antichains corresponds to the case where G has
a valuational-like final segment and an order-type-like part beneath it. This last case
means that Γ has a minimum γ such that x ∈ V for every x ∈ G with v(x) = γ, but
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G also contains some o-type elements. Our theory of C-q.o. groups then allows us to
reinterpret the theorems of [MS96] on C-minimal groups:

Theorem 4.4.7 ([MS96, Theorems 4.4, 4.8 and 4.9])
Let (G,-) be a C-minimal C-q.o.g. and assume that C is a dense C-relation. Let
v : G→ (Γ ∪ {∞},≤) be the type-valuation of (G,-). Then exactly one of the following
holds:

(1) - comes from a valuation w : G→ Ψ ∪ {∞}. In that case, we have the following:

(i) For any λ ∈ Ψ, Gλ and Gλ are normal in G.
(ii) The quotient Gλ/Gλ is abelian for all but finitely many λ ∈ Ψ.
(iii) If Gλ/Gλ is infinite, then it is elementary abelian or divisible abelian. If it is

divisible, then Gλ is also abelian.
(iv) There is a definable abelian subgroup H of G such that G/H has finite exponent.

(2) There exists g ∈ O such that v(g) = min(Γ). In that case G is abelian and divisible,
Gg is C-minimal and Gg/Gg is o-minimal.

(3) G , V and for all g ∈ O, v(g) , min(Γ). In that case there exists g ∈ V with
v(g) = min(Γ), and there is a definable subgroup H of G such that G/H has finite
exponent.

Proof. Cases (1) and (2) are direct reformulations of [MS96, theorems 4.4 and 4.8] using
our Proposition 4.4.6. For (3), we know from Proposition 4.4.6 and from [MS96, Theorem
4.9] that there exists s := (g, 1) ∈ T, g ∈ G, such that for any t ≤ s, the orbit of t under
G is an antichain. Since g.1−1 ∈ Tg, and since the orbit of s under G is an antichain,
Lemma 4.4.5(iii) implies that g is v-type. Now let u ∈ G with g - u. We have {1, g} - u.
By definition of ≤, this implies (u, 1) ≤ (g, 1) = s, so the orbit of (u, 1) under G is an
antichain. Since moreover u ∈ Tu, it follows from Lemma 4.4.5(iii) that u is v-type. �

Remark 4.4.8: 1. Theorem 4.4.7 shows in particular that, if G is C-minimal, then
Γ has a minimum. Thus, the “ordered” parts cannot alternate indefinitely with
the “valued” parts. Eventually, the group has to either stay valuational-like or stay
order-type-like.

2. Theorem 4.4.7 leaves open the question of welding in the case of C-minimality.
More precisely, it does not say if it is possible to have welding in case (ii).

The rest of this chapter is devoted to improving Theorem 4.4.7, i.e. giving a complete
description of C-minimal groups in terms of their type-valuation and of their fundamental
components. We will use a different approach than the one in [MS96]: instead of
considering the canonical tree of a structure and the action induced by the group on
the tree, we will use the theory of C-q.o.’s developed in this thesis, and in particular our
theorem 4.3.33. Unlike the authors of [MS96], we will not restrict to dense C-relations.
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4.4.2 A “Feferman-Vaught” theorem

This section is the C-q.o. analog of Section 3.3.3. More precisely, we want to see how
elementary equivalence behaves with respect to quotients and valuational products. In
the spirit of Theorem 3.3.13 for compatible q.o.a.g.’s, we prove a “Feferman-Vaught”
theorem for C-q.o. groups, i.e. we prove that the valuational product of finitely many
C-q.o. groups preserves elementary equivalence. Note that the proofs are similar to those
of Section 3.3.3.

Lemma 4.4.9
Let (G,-) be a C-q.o. group, F a ∅-definable strictly convex normal subgroup of G and
H := G/F . Let θ(x) be a formula defining F . Let φ(x̄) be a formula of L. Then there
exists two formulas φF (x̄), φH(x̄) in L, each of the same arity as φ, such that, if G′ ≡ G,
if F ′ = θ(G′) and H ′ = G′/F ′, then we have:

(i) For any f̄ ⊆ F ′, F ′ � φ(f̄) if and only if G′ � φF (f̄).

(ii) For any h̄ ⊆ H ′, H ′ � φ(h̄) if and only if for all ḡ ⊆ G′, ḡF ′ = h̄ ⇒ G′ � φH(ḡ) if
and only if there exists ḡ ⊆ G′ with ḡF ′ = h̄ and G′ � φH(ḡ).

Proof. For (i): write φ in prenex form: φ(x̄) ≡ Q1y1 . . . Qnynψ(ȳ, x̄), where each Qi is a
quantifier and ψ is quantifier-free. Since F is ∅-definable in G, we can define the formula
φF (x̄) ≡ Q1y1 ∈ F . . .Qnyn ∈ Fψ(ȳ, x̄), and it is then easy to see that φF has the desired
property.

For (ii): We proceed by induction on φ. Assume first that φ is atomic:
φ(x̄) ≡ P (x̄) - Q(x̄). Define φH(x̄) as θ(P (x̄))∨ (¬θ(Q(x̄))∧φ(x̄)). By definition of - on
H ′ (see Proposition 4.3.8), this formula satisfies the desired condition. Assume now that
φ ≡ ¬ψ and set φH :≡ ¬ψH . If H ′ � φ(h̄), then H ′ 2 ψ(h̄), so by induction hypothesis
we have G′ 2 ψH(ḡ) for all ḡ ⊆ G′ with ḡF ′ = h̄, hence G′ � φH(ḡ). Conversely, if
there is ḡ ⊆ G′ with ḡF ′ = h̄ and G′ � φH(ḡ), then G′ 2 ψH(ḡ) which by induction
hypothesis means H ′ 2 ψ(h̄) hence H ′ � φ(h̄). If φ ≡ φ1 ∧ φ2, one can easily show that
φH :≡ φH1 ∧ φH2 satisfies the desired property and if φ ≡ ∃yψ(y, x̄), it is also easy to see
that φH ≡ ∃yψH(y, x̄) is suitable. �

Remark 4.4.10: If A ⊆ G, and if F is A-definable, then we can find φF (x̄), φH(x̄) ∈ LA
satisfying the conditions of Lemma 4.4.9 for G′ = G (the proof is the same).

Proposition 4.4.11
Let (G1,-1) and (G2,-2) be two C-q.o.g.’s such that G1 ≡ G2. Let F1 be a ∅-definable
strictly convex normal subgroup of G1 and F2 the strictly convex normal subgroup of G2
defined by the same formula as F1. Then we have F1 ≡ F2 and G1/F1 ≡ G2/F2.

Proof. Set Hi := Gi/Hi and let φ be a sentence of L. Take φF , φH as in Lemma 4.4.9. If
F1 � φ, then G1 � φF , hence by assumption G2 � φF , hence by choice of φF : F2 � φ. We
could show similarly that H1 � φ implies H2 � φ, hence F1 ≡ F2 and H1 ≡ H2. �
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Lemma 4.4.12
Let φ(x̄) be a formula of L. Then there is n ∈N such that there are 2n formulas
φF1 (x̄), . . . , φFn (x̄), φH1 (x̄), . . . , φHn (x̄), each having the same arity as φ, such that the
following holds:

For any C-q.o. groups (H,-) and (F,-), for any ḡ = h̄.f̄ in G := H × F , we have:
G � φ(ḡ) if and only if there exists i ∈ {1, . . . , n} such that F � φFi (f̄) and H � φHi (h̄).

Proof. We identify H with G/F . We proceed by induction on φ. We first assume
that φ is an atomic formula: P (x̄) - Q(x̄). Set n = 2 and define φF1 (x̄) :≡ (x̄ = x̄),
φH1 (x̄) :≡ (Q(x̄) , 1 ∧ φ(x̄)), φF2 (x̄) :≡ φ(x̄) and φH2 (x̄) :≡ (Q(x̄) = P (x̄) = 1). We must
check that these formulas satisfy the desired condition. Note that for any F,H, ḡ as above,
we have P (ḡ) = P (h̄)P (f̄) (because f and h commute) with P (f̄) ∈ F and P (h̄) ∈ H,
and in particular we have P (ḡ)F = P (h̄) and P (ḡ) ∈ F if and only if P (h̄) = 1. With
this remark in mind, it follows directly from the definition of the valuational product that
the formulas φF1 , φF2 , φH1 , φH2 satisfy the condition we want. This settles the case where φ
is atomic. If φ ≡ ψ ∨ χ, and if ψF1 , . . . , ψFk , ψH1 , . . . , ψHk , χF1 , . . . , χFl , χH1 , . . . , χHl are the
desired formulas for ψ and χ, we simply set n := k+ l, φFi :≡ ψFi , φHi :≡ ψHi for 1 ≤ i ≤ k
and φFi :≡ χFi , φ

H
i :≡ χHi for k < i ≤ n. Now assume that φ ≡ ∃yψ(y, x̄) and let

ψF1 , . . . , ψ
F
k , ψ

H
1 , . . . , ψ

H
k be the desired formulas for ψ. Define n := k, φFi :≡ ∃yψFi (y, x̄)

and φHi :≡ ∃yψHi (y, x̄) for every i ∈ {1, . . . , n}. If G � φ(ḡ), then there is a = aHaF ∈ G
with G � ψ(a, ḡ), which implies by induction hypothesis that there is i with F � ψFi (aF , f̄)
and H � ψHi (aH , h̄), hence F � φFi (f̄) and H � φHi (f̄). Conversely, if we assume that
F � φFi (f̄) and H � φHi (h̄), then there is some aF ∈ F and aH ∈ H with F � ψFi (aF , f̄)
and H � ψHi (aH , h̄), and by induction hypothesis we then have G � ψ(aHaF , ḡ) hence
G � φ(ḡ). This shows that the formulas φF1 , . . . , φFn , φH1 , . . . , φHn have the desired property.

Now we just have to consider the case φ ≡ ¬ψ. Let ψF1 , . . . , ψFk , ψH1 , . . . , ψHk be given.
Let P := P({1, . . . , k}) denote the power set of {1, . . . , k}. For any I ∈ P , we define
φFI , φ

H
I as follows: φFI ≡

∧
i∈I ¬ψFi and φHI ≡

∧
i<I ¬ψHi . Now let us check that the

formulas (φFI )I∈P and (φHI )I∈P satisfy the desired property. Assume that G � φ(ḡ),
so G 2 ψ(ḡ). By induction hypothesis, this means that for all i ∈ {1, . . . , k}, either
F 2 ψFi (f̄) or H 2 ψHi (h̄). Choose I ∈ P as the set of all i with F 2 ψFi (f̄). Then
F � φFI (f̄) and H � φHI (h̄). Conversely, assume there is I ∈ P with F � φFI (f̄) and
H � φHI (h̄). Then for any i ∈ {1, . . . , k}, we either have F 2 ψFi (f̄) ( when i ∈ I) or
H 2 ψHi (h̄) (when i < I). By induction hypothesis, this means that G 2 ψ(ḡ).

�

Theorem 4.4.13
Let (G1,-G1 ), . . . , (Gn,-Gn ) and (H1,-H1 ), . . . , (Hn,-Hn ) be C-q.o. groups. Let (G,-G) be
the valuational product of the family (Gi,-Gi )1≤i≤n and (H,-H) the valuational product
of the family (Hi,-Hi )1≤i≤n. Assume that for each i, we have Hi ≡ Gi. Then H ≡ G.

Proof. By induction, it is sufficient to show the case n = 2, which follows directly from
Lemma 4.4.12. �
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4.4.3 Basic formulas and definable sets of a C-minimal group

In all the rest of this section, (G,-) is a C-q.o. group with type-valuation v, type-chain
(Γ,≤,O,V) and fundamental components (Bγ ,-γ)γ∈Γ (see Remark 4.3.35(i) and (iv)).
We recall that, if v(g) , v(h), then v(g) < v(h) if and only if h - g. If γ = v(g), then we
will sometimes denote by Gγ , Gγ and Tγ the sets Gg, Gg and Tg (this notation does not
generate confusion thanks to Remark 4.3.31).

We want to describe the definable sets of (G,-) when the group is C-minimal. For
any a, b ∈ G, we define:

(i) [a, b] := {g ∈ G | a - g - b}

(ii) [a, b) := {g ∈ G | a - g � b}

(iii) (a, b] := {g ∈ G | a � g - b}

(iv) (a, b) := {g ∈ G | a � g � b}

(v) (a,∞) := {g ∈ G | a � g}

(vi) [a,∞) := {g ∈ G | a - g}

A subset of G of this form is called an interval of (G,-). Intervals of the form (iv) or
(v) are called open intervals, whereas intervals of the form (i) or (vi) are called closed
intervals. The elements a and b are called the extremities of the interval. Note that
intervals are convex. It is easy to see that the intersection of an interval is an interval,
for example [a, b) ∩ [c, d) is equal to either [a, b), [a, d), [c, b) or [c, d).

We define the basic formulas of (G,-) as the formulas of the following type, where
a, b are parameters in G:

Type 1: xa−1 - b.

Type 2: xa−1 � b.

Type 3: b - xa−1.

Type 4: b � xa−1.

Formulas of type 1 are called closed balls and formulas of type 2 are called open
balls. Note that formulas of type 3 and 4 are negations of balls. It follows that an
L-formula is a boolean combination of balls if and only if it is a disjunction of conjunctions
of basic formulas. Note also that a set with exactly one element is a ball: the set {a} is
defined by xa−1 - 1. The basic formulas are useful to characterize C-minimality:

Proposition 4.4.14
The C-group (G,-) is weakly C-minimal if and only if every definable subset of G is a
boolean combination of balls.
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Proof. The atomic formulas of the language {C} with parameters are formulas of the
form C(x, a, b), C(a, x, b), C(a, b, x) and x = a, where a, b ∈ G are parameters. the
formula x = a is equivalent to xa−1 - 1. By (C1), the formulas C(a, x, b) and C(a, b, x)
are equivalent. By compatibility of C, C(a, x, b) is equivalent to C(ab−1, xb−1, 1), which
by definition of - is equivalent to xb−1 � ab−1. Similarly, C(x, a, b) is equivalent to
C(xb−1, ab−1, 1), which is equivalent to ab−1 � xb−1. Now each of the formulas xa−1 - 1,
xb−1 � ab−1 and ab−1 � xb−1 is a basic formula. It follows that any quantifier-free formula
of the language {C} is a disjunction of conjunctions of basic formulas. Conversely, the
formula xa−1 - b is equivalent to ¬C(xa−1, b, 1) by definition of -. By compatibility
of C, this is equivalent to ¬C(x, ba, a). Similarly, we have xa−1 � b ⇔ C(ba, x, a). It
follows that every boolean combination of balls is equivalent to a quantifier-free formula
of {C} with parameters. �

In order to understand the definable sets of G, it is therefore essential to understand
what the balls in G look like. For this, we need the following lemmas:

Lemma 4.4.15
If v(g) < v(h), then gh ∼ hg ∼ g. If v(gh−1) > v(h), then g ∼ h.

Proof. Assume v(g) < v(h). We then have {h, h−1} - {g−1, g}. If g ∈ O, then it
follows from Proposition 4.1.12 that gh ∼ g ∼ hg. If g ∈ V, then Tg is left-convex (see
Proposition 4.3.22), so h � g. It then follows from Proposition 4.1.12 that gh ∼ hg ∼ g.
Now assume v(gh−1) > v(h). Then by what we just proved, we have gh−1.h ∼ h, hence
g ∼ h. �

Lemma 4.4.16
If a ∈ V, then for any g ∈ G, the following holds:

(i) g � a⇒ ag ∼ ga ∼ a.

(ii) g ∼ a⇒ {ag, ga} - a.

(iii) a � g ⇒ ga ∼ ag ∼ g.

Proof. The cases a � g and g � a directly follow from Proposition 4.1.12. Assume a ∼ g.
Because a ∈ V, we have g - a−1, hence by (CQ2): ga - a and ag - a. �

Lemma 4.4.17
Let g ∈ O and take h, f ∈ T+

g . The following holds:

(i) {h, f} � {hf, fh}.

(ii) {h−1f, fh−1} � f .

(iii) For any a ∈ G, a ∼ f if and only if fa−1 ∈ Gg.

(iv) fh−1 ∈ T−g ⇔ f � h.
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Proof. All these results follow directly from the fact that the C-q.o. on Gg/Gg is
order-type (Proposition 4.3.13) with positive cone πGg(T+

g ). �

These lemmas allow us to prove that any ball is either an initial segment or is
contained in one ∼-class:

Proposition 4.4.18
Let φ(x) :≡ xa−1 - b and ψ(x) :≡ xa−1 � b. Then φ(G) is either equal to [1, a], [1, b],
[1, ba] or to a subset of cl(a). Moreover, ψ(G) is either equal to [1, a), [1, b), [1, ba) or to
a subset of cl(a).

Proof. Set A := φ(G) and B := ψ(G). Note that B ⊆ A. We exhaustively study each
case for the type of a and for the relative position of a and b.

(1) Case a ∈ V: note that in this case, cl(a) = cl(a−1) and [1, a] = [1, a−1].

(i) Case b � a: If g � a−1, then Lemma 4.4.16(i) implies ga−1 ∼ a−1. If a−1 � g,
then 4.4.16(iii) implies ga−1 ∼ g. In both cases, we have b � ga−1, hence g < A.
This shows that A ⊆ cl(a−1) = cl(a), which also implies B ⊆ cl(a).

(ii) Case a ∼ b: If a−1 � g then Lemma 4.4.16(iii) implies b � ga−1, hence g < A.
Conversely, if g - a−1, then Lemma 4.4.16(ii) implies ga−1 - b, hence g ∈ A.
This shows A = [1, a−1]. If g � a−1, then Lemma 4.4.16(i) implies b ∼ ga−1,
hence g < B. This shows B ⊆ cl(a−1).

(iii) Case a � b: If g - a, then Lemma 4.4.16(ii) implies ga−1 - a−1, hence ga−1 � b,
hence g ∈ B. This shows [1, a] ⊆ B. If a � g, then Lemma 4.4.16(iii) implies
ga−1 ∼ g, so ga−1 - b if and only if g - b, and ga−1 � b if and only if g � b. It
follows that A = [1, b] and B = [1, b).

(2) Case a ∈ O+:

(i) Case v(b) > v(a): By Proposition 4.3.13, we know that Ga is strictly convex.
Since b ∈ Ga, it follows that ga−1 � b⇒ ga−1 ∈ Ga, so ga−1 � b⇒ v(ga−1) >
v(a). By Lemma 4.4.15, it then follows that B ⊆ cl(a). If b / a−1, then the
same argument shows that A ⊆ cl(a). Now assume that b ∼ a−1, so we have
g ∈ A ⇔ ga−1 - a−1. It then follows from (CQ2) that g ∈ A ⇔ g - a, hence
A = [1, a].

(ii) Case v(b) < v(a): Because Ta is right-convex (Proposition 4.3.11), we have
Ga � b. If g ∈ Ga, then ga−1 ∈ Ga, hence ga−1 � b. This shows Ga ⊆ B.
If g < Ga, then v(g) < v(a−1), and it then follows from Lemma 4.4.15 that
ga−1 ∼ g, so ga−1 - b if and only if g - b, and ga−1 � b if and only if g � b.
This shows that A = [1, b] and B = [1, b).

(iii) Case b ∈ T−a : By (CQ2), g - a ⇒ ga−1 - a−1. By Lemma 4.3.15, a−1 ∼ b.
This shows [1, a] ⊆ A. Moreover, by (CQ′2), a � g implies a−1 � ga−1, which in
turn implies g < A. This shows A = [1, a]. If ga−1 � b, then v(ga−1) > v(a), so
Lemma 4.4.15 implies g ∈ cl(a). This shows B ⊆ cl(a).
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(iv) Case b ∈ T+
a : By (CQ2), we have ga−1 - b ⇔ g(ba)−1 - b−1. Since ba ∈ T+

a ,
we have in particular ba ∈ O+ and T−a = T−ba, hence b−1 ∈ T−ba. Replacing a by
ba and b by b−1, this brings us back to Case (2)(iii), which implies A = [1, ba].
Now let g ∈ A. It follows from Lemma 4.4.17(iii) that ga−1 ∼ b⇔ ga−1b−1 ∈
Ga ⇔ g ∼ ba, hence B = [1, ba).

(3) Case a ∈ O−:

(i) Case v(b) > v(a): If b � a, then ga−1 - b ⇒ v(ga−1) > v(a) (this is because
Ga is strictly convex). Lemma 4.4.15 then implies A ⊆ cl(a). Now assume
b ∼ a. This means b ∈ Wa. If v(g) > v(a), then by Lemma 4.4.15 we have
ga−1 ∼ a−1, and since a ∈ O− we have a � a−1, hence b � ga−1. It follows
that g < A. If v(g) < v(a), then by Lemma 4.4.15, we have ga−1 ∼ g. Since Ga
is convex, and since b ∈ Ga, it follows that b � ga−1, hence g < A. Therefore,
A ⊆ Ta. If g ∈ T+

a , then ga−1 ∈ T+
a , hence b � ga−1, hence g < A. Therefore,

A ⊆ T−a ⊆ cl(a). It then follows that B ⊆ cl(a).
(ii) Case v(b) < v(a): Lemma 4.4.15 implies A = [1, b] and B = [1, b) (the proof is

similar to case(2)(ii)).
(iii) Case b ∈ T−a : If v(g) > v(a), then Lemma 4.4.15 implies a−1 ∼ ga−1. Since

a−1 ∈ T+
a , it follows that b � ga−1, so g < A. If v(g) < v(a), then Lemma 4.4.15

implies g ∼ ga−1, which also implies g < A. Therefore, A ⊆ Ta. If g ∈ T+
a , then

ga−1 ∈ T+
a , hence b � ga−1. Therefore, A ⊆ T−a ⊆ cl(a), hence also B ⊆ cl(a).

(iv) Case b ∈ T+
a : By (CQ2), we have xa−1 - b ⇔ x(ba)−1 - b−1. Note that

b−1 ∈ T−a . If ba ∈ T−a , then in particular we have ba ∈ O− and b−1 ∈ T−ba.
Case (3)(iii) then implies A ⊆ cl(ba) = cl(a), which also implies B ⊆ cl(a).
Assume ba ∈ T+

a . Then we have ba ∈ O+ and b−1 ∈ T−ba. Case (2)(iii)
then implies A = [1, ba]. It follows from Lemma 4.4.17 that, for any g ∈ A,
ga−1 ∼ b ⇔ ga−1b−1 ∈ Ga ⇔ g ∼ ba. It follows that B = [1, ba). Finally,
assume ba ∈ Ga. Then we have v(b−1) < v(ba). Cases (1)(ii),(2)(ii) and (3)(ii)
then imply A = [1, b−1] = [1, a]. Now take g ∈ Ga. Then by Lemma 4.4.15,
we have ga−1 ∼ a−1. Moreover, since ba ∈ Ga, Lemma 4.4.17 implies b ∼ a−1.
Therefore, g < B. Since A = Ga ∪ cl(a), this shows B ⊆ cl(a).

�

Proposition 4.4.18 allows us to describe the definable subsets of a C-minimal group.

Proposition 4.4.19
Assume that (G,-) is weakly C-minimal and let A be a definable subset of G. There
exists finitely many intervals J1, . . . , Jn ⊆ G and a set X ⊆ G such that cl(X) is finite
and A = J1 ∪ · · · ∪ Jn ∪X.

Proof. Let E denote the class of all subsets of G of the form J1 ∪ · · · ∪ Jn ∪ X as
above. By Proposition 4.4.14, we just have to show that E contains every boolean
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combination of balls. If A is a ball, then we know by Proposition 4.4.18 that either A
is an interval or A ⊆ cl(a) for some a ∈ G, so A ∈ E. If A is an interval, then G\A is
a union of two intervals (for example, G\[a, b] = (1, a) ∪ (b,∞)). If A ⊆ cl(a), we have
G\A = [1, a)∪(a,∞)∪(cl(a)\A). This shows that the complement of a ball is always in E.
Clearly, E is stable under finite union, so it only remains to show that E is stable under
finite intersection. Let I and J be two finite unions of intervals and X,Y ⊆ G such that
cl(X) and cl(Y ) are finite. We have (I∪X)∩(J∪Y ) = (I∩J)∪(I∩Y )∪(J∩X)∪(X∩Y ).
Clearly, cl((I ∩ Y ) ∪ (J ∩X) ∪ (X ∩ Y )) is finite, so we just have to show that I ∩ J is
a finite union of intervals. Write I = I1 ∪ · · · ∪ In and J = J1 ∪ · · · ∪ Jk, where Ii and
Ji are intervals. We know that an intersection of intervals is an interval, so for any i, j,
Ii ∩ Jj is an interval. It follows that I ∩ J = ⋃

i,j(Ii ∩ Jj) is a finite union of intervals. �

Remark 4.4.20: Note that, when we write a definable set A as A = J1 ∪ · · · ∪ Jn ∪X
as in Proposition 4.4.19, we can always assume the following:

(i) J1 - J2 - · · · - Jn.

(ii) For any x ∈ X, cl(x) * X. Indeed, if cl(x) ⊆ X, then [x, x] is an interval contained
in A, so set Jn+1 := [x, x] and X ′ := X\cl(x) and we have A = J1 ∪ · · · ∪ Jn+1 ∪X ′.

Moreover, with these assumptions, A is convex if and only if X = ∅ if and only if A is a
finite union of intervals.

With Proposition 4.4.19, we can describe the definable subgroups of a C-minimal
group. For this, we will also need the following Lemma:

Lemma 4.4.21
Let H be a subgroup of G and h ∈ G. If cl(h−1) ⊆ H, then [1, h) ⊆ H.

Proof. Let g � h. By Lemma 4.1.11, this implies gh−1 ∼ h−1, hence by assumption
gh−1 ∈ H. Since h ∈ H, it follows that g ∈ H. �

Lemma 4.4.22
Let F be a definable subgroup of G and write F = J1 ∪ · · · ∪ Jn ∪X as in Proposition
4.4.19 with the assumptions of Remark 4.4.20. Then H := J1 ∪ · · · ∪ Jn is a normal
subgroup of F and H is convex in G.

Proof. Let g, h ∈ H. Without loss of generality, g - h. By (CQ2), we have gh−1 - h−1.
Because H is a union of intervals and because h−1 ∈ H, we have cl(h−1) ⊆ H. By
Lemma 4.4.21, [1, h) ⊆ H. Since h ∈ H, we even have [1, h] ⊆ H, hence gh−1 ∈ H. This
shows that H is a group. Lemma 4.4.21 shows that H is convex. Now let us show that
H is normal in F . Let g ∈ H and z ∈ F . By (CQ3), we have cl(gz) = {hz | h ∼ g}. By
assumption (ii) of Remark 4.4.20, there must be hz ∈ cl(gz) such that hz < X, hence
hz ∈ H. Since H is convex and gz ∼ hz, it follows that gz ∈ H. �

The next result will be useful to describe C-minimal groups in Section 4.4.4:
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Lemma 4.4.23
Assume (G,-) is weakly C-minimal, let F be a definable subgroup of G and g ∈ F ∩ O.
Then Gg ⊆ F .

Proof. Without loss of generality, g ∈ O+. Write F = J1∪· · ·∪Jn∪X as in Lemma 4.4.22.
Because g ∈ O+, the sequence (gl)l∈N is strictly increasing. Therefore, {gl | l ∈ N}
cannot be contained in X, so there is l ∈ N with gl ∈ H := J1 ∪ · · · ∪ Jn. By Lemma
4.4.22, H is a convex subgroup of F . In particular, since H is convex and T−g - g

l,
we have T−g ⊆ H, hence T−g ⊆ F . This implies T+

g ⊆ F , hence Tg ⊆ F . Now take
f ∈ Gg. By Lemma 4.4.15, we have gf ∈ Tg, hence gf ∈ F , hence f ∈ F . Therefore,
Gg = Gg ∪ Tg ⊆ F . �

4.4.4 Structure of a C-minimal group

We now assume that (G,-) is weakly C-minimal and we want to describe the structure
of (G,-).

Proposition 4.4.24
Γ is finite.

Proof. Towards a contradiction, assume that Γ is infinite. Then without loss of generality,
there exists an infinite sequence (gn)n∈N in O+ such that v(gn) > v(gn+1) for all n ∈N.
The set O+ is definable, so we can write O+ = J1 ∪ · · · ∪ Jn ∪X as in Proposition 4.4.19.
Because cl(X) is finite, and because (gn)n is strictly increasing, there must be i, n,m ∈N
with n < m and gn, gm ∈ Ji. Since v(gm) < v(gn), we have gn � g−1

m � gm. Since Ji is
an interval, it follows that g−1

m ∈ Ji ⊆ O+: contradiction. �

Before describing the structure of a C-minimal group, we want to show that we can
assume that the group is welding-free without losing generality. This will make later
proofs easier. Note that, since Γ is finite, then in particular (G,-) has finitely many
welding classes. Let g1, . . . , gn ∈ O− be a set of representatives of the welding classes
and let h1, . . . , hn ∈ V with hi ∼ gi. Finally, let -∗ be the unwelding of - (see Remark
4.3.35). Then - and -∗ are inter-definable with the parameters g1, . . . , gn, h1, . . . , hn, via
the following formulas (be careful that “cl” denotes the ∼-class and not the ∼∗-class):

g - h⇔ g -∗ h ∨ (
n∨
i=1

(g ∼∗ gi ∧ h ∼∗ hi)) (F1)

g -∗ h⇔ g - h ∧ ¬(
n∨
i=1

(g ∈ cl(gi) ∩ O ∧ h ∈ cl(hi) ∩ V)) (F2)

Lemma 4.4.25
Set L∗ := {1, .,−1 ,-∗}. The following holds:
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(i) For any φ(x̄) ∈ L∗, there exists φ∗(x̄, ȳ, z̄) ∈ L such that for any f̄ ⊆ G,
(G,-∗) � φ(f̄) if and only if (G,-) � φ∗(f̄ , g1, . . . , gn, h1, . . . , hn).

(ii) For any φ(x̄) ∈ L, there exists φ∗(x̄, ȳ, z̄) ∈ L∗ such that for any f̄ ⊆ G,
(G,-∗) � φ∗(f̄ , g1, . . . , gn, h1, . . . , hn) if and only if (G,-) � φ(f̄).

Proof. If φ is atomic, then this is given by formulas (F1) and (F2). Both claims then
generalize to all formulas by induction. �

Lemma 4.4.26
If A is a boolean combination of balls in (G,-), then A is also a boolean combination of
balls in (G,-∗).

Proof. It suffices to show the case where A is a ball in (G,-). Assume then that A is
defined by the formula xa−1 - b. By formula (F1), this is equivalent to
xa−1 -∗ b ∨ (∨n

i=1(xa−1 ∼∗ gi ∧ b ∼∗ hi)). This is indeed a boolean combination of balls
in (G,-∗). Moreover, the formula xa−1 � b is equivalent
to ¬(b -∗ xa−1 ∨ (∨n

i=1(b ∼∗ gi ∧ xa−1 ∼∗ hi)))), which is also a boolean combination of
balls in (G,-∗). �

Proposition 4.4.27
The C-q.o. group (G,-∗) is weakly C-minimal. If (G,-) is C-minimal, then (G,-∗) is
also C-minimal.

Proof. Let A ⊆ G be definable in L∗. By Lemma 4.4.25, A is also definable in L. Because
(G,-) is weakly C-minimal, A is a boolean combination of balls in (G,-). It then follows
from Lemma 4.4.26 that A is a boolean combination of balls in (G,-∗).

Now assume that (G,-) is C-minimal. Let (H,-) be an ω-saturated elementary
extension of (G,-). Define -∗ on H by formula (F2). Then (H,-∗) is an ω-saturated
elementary extension of (G,-∗). Because (G,-) is C-minimal, (H,-) is also C-minimal.
We just showed that this proves that (H,-∗) is weakly C-minimal. It then follows from
Proposition 4.4.2 that (G,-∗) is C-minimal. �

Proposition 4.4.27 shows that, when studying the properties of C-minimal groups, we
can always assume the group to be welding-free.

We now want to show that the fundamental components of (G,-) are weakly C-
minimal.

Lemma 4.4.28
Let (G,-) be a C-q.o.g., F ⊆ G a convex subgroup of G and ψ(x, b̄) a boolean combination
of balls with parameter b̄ ⊆ G. Then there is a boolean combination of balls χ(x, c̄) with
parameter c̄ ⊆ F such that for any g ∈ F , G � ψ(g, b̄) if and only if G � χ(g, c̄).

Proof. We just have to show the case where ψ(x, b̄) is a ball. Assume then that ψ(x, a, b) ≡
xa−1 - b with a, b ∈ G. Assume that a < F . Then by convexity of F , we have g � a for
every g ∈ F . It then follows from Lemma 4.1.11 that ga−1 ∼ a−1 for all g ∈ F . It follows
that ψ(F, a, b) is either empty or F , so in particular it is a ball of F . Assume a ∈ F . If
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b ∈ F then there is nothing to do. If b < F , then we have ψ(F, a, b) = F by convexity of
F . The case ψ(x, a, b) ≡ xa−1 � b is similar. �

Lemma 4.4.29
Let F be a convex subgroup of G and denote by π the canonical projection π : G→ G/F .
Let A ⊆ G be a boolean combination of balls. Then π(A) is also a boolean combination
of balls.

Proof. Because π(X ∪Y ) = π(X)∪π(Y ) for any X,Y ⊆ G, we only have to consider the
case where A is a conjunction of basic formulas. Let φ(x, ā, b̄) ≡ ∧

i∈I φi(x, ai, bi) be a for-
mula defining A, where each φi(x, ai, bi) is a basic formula. We partition I in the following
manner. Set I1 := {i ∈ I | bi < F}, I2 := {i ∈ I | φi(x, ai, bi) is of type 1 or 2 and bi ∈
F} and I3 := {i ∈ I | φi(x, ai, bi) is of type 3 or 4 and bi ∈ F}. We thus have I =
I1 ∪ I2 ∪ I3. Assume first that I2 , ∅. Let g ∈ A and i ∈ I2. Then we have ga−1

i - bi.
By definition of I2, we have bi ∈ F . By convexity of F , it follows that ga−1

i ∈ F ,
hence gF = aiF . This shows that π(A) ⊆ {aiF}, so π(A) is a ball. Therefore, we
can assume that I2 = ∅. Now set J := {i ∈ I3 | aiF < π(A)}. For any i ∈ J , set
ψi(x, aiF ) :≡ x , aiF . Finally, set ψ(x, āF, b̄F ) :≡ ∧

i∈I1 φi(x, aiF, biF )∧∧
i∈J ψi(x, aiF ).

Then ψ(x, āF, b̄F ) is a boolean combination of balls, and we will now show that it defines
π(A). Let h ∈ π(A) and take g ∈ A with gF = h. We thus have G � φ(g, ā, b̄). Let i ∈ I1.
We have G � φi(g, ai, bi). By definition of I1, bi < F . It then follows from Remark 4.2.3,
that H � φi(h, aiF, biF ). Now let j ∈ J . Since h ∈ π(A), it follows from the definition of
J that h , ajF , hence H � ψj(h, ajF ). This shows that H � ψ(h, āF, b̄F ). Conversely,
assume that H � ψ(h, āF, b̄F ), and let us prove that h ∈ π(A). Take g ∈ G with gF = h.
It follows from Remark 4.2.3 that, for any i ∈ I1, G � φi(g, ai, bi). Now let i ∈ I3. Assume
first that i ∈ J . Because h , aiF , we have ga−1

i < F . By definition of I3, we have bi ∈ F .
It follows from the convexity of F that bi � ga−1

i . Since φi(x, ai, bi) is of type 3 or 4, this
implies G � φi(g, ai, bi). Therefore, we have G � φi(g, ai, bi) for all i ∈ I1 ∪ J . If for all
i ∈ I3\J , G � φi(g, ai, bi), then it follows that G � φ(g, ā, b̄), hence g ∈ A, hence h ∈ π(A).
Now assume there is i ∈ I3\J with G 2 φi(g, ai, bi). Then we have ga−1

i - bi ∈ F , which
by convexity of F implies gF = aiF . Since i < J , it follows from the definition of J that
h = aiF ∈ π(A). �

Proposition 4.4.30
Let (G,-) be a C-q.o. group and F a definable convex normal subgroup of (G,-). If G
is weakly C-minimal, then so are F and G/F . If G is C-minimal, then F and G/F are
also C-minimal.

Proof. Let φ(x, ā) be a formula with parameter ā ⊆ F . Take a formula φF (x, ȳ) as given
by Remark 4.4.10. Since G is weakly C-minimal, there exists a boolean combination of
balls ψ(x, b̄) with parameter b̄ ∈ G such that G � ∀x(φF (x, ā) ⇔ ψ(x, b̄)). By Lemma
4.4.28, there exists a boolean combination of balls χ(x, c̄) with parameter c̄ ⊆ F , such
that for all f ∈ F , G � χ(f, c̄)⇔ ψ(f, b̄). It follows that F � ∀x(φ(x, ā)⇔ χ(x, c̄)).

Now assume āF ⊆ H := G/F . Take φH as in Remark 4.4.10. Then we have
φ(H, āF ) = π(φH(G, ā)). Because (G,-) is weakly C-minimal, φH(G, ā) is a boolean
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combination of balls in (G,-). It then follows from Lemma 4.4.29 that φ(H, āF ) is a
boolean combination of balls in (H,-).

Now assume that G is C-minimal. Let G′ be an ω-saturated elementary extension
of G, φ a formula with parameters in G defining F and and let F ′ := φ(G′). Because
G is C-minimal, G′ is also C-minimal. We just proved that this implies that F ′ and
H ′ := G′/F ′ are weakly C-minimal. Moreover, it follows from Lemma 4.4.9 and Remark
4.4.10 that F ′ (respecively, H ′) is an ω-saturated elementary extension of F (respectively,
H). It then follows from Proposition 4.4.2 that F and H are C-minimal.

�

For the proof of the next lemma, we refer to the definition of Tg at the beginning of
Section 4.3.3.

Lemma 4.4.31
For any g ∈ G, Tg is {g}-definable. Moreover, the relation v(x) ≤ v(y) is ∅-definable.

Proof. Assume g ∈ V. Then Tg is definable by the following formula:
x ∈ V ∧ (∀y, (g - y - x ∨ x - y - g)⇒ y < O+). Now assume g ∈ O+. T+

g is defined by
the formula: x ∈ O+ ∧ (∀y, (g - y - x ∨ x - y - g) ⇒ y ∈ O+). Now define Tg by the
formula x ∈ T+

g ∨x−1 ∈ T+
g . Therefore, Tg is {g}-definable. It follows from the definition

of v (see Proposition 4.3.30) that v(x) ≤ v(y)⇔ Tx = Ty ∨ (∀z ∈ Ty∀w ∈ Tx, z - w). �

We can now state our main Proposition on weakly C-minimal groups.

Proposition 4.4.32
For every γ ∈ Γ, the following holds:

(1) Tγ , Gγ and Gγ are ∅-definable in L.

(2) Gγ and Gγ are normal in G.

(3) (Gγ ,-) and (Bγ ,-γ) are weakly C-minimal. If moreover G is C-minimal, then (Gγ ,-)
and (Bγ ,-γ) are C-minimal.

(4) If γ , max(Γ), then min(Tγ) , ∅.

Proof. Write Γ := {1, . . . ,m}. Note that a C-q.o. has the same type-valuation and
the same fundamental components as its unwelding. Therefore, by Proposition 4.4.27,
we can assume that (G,-) is welding-free. Then for all γ ∈ Γ, Gγ is convex in (G,-).
Let us prove (1). Let γ ∈ Γ. then Tγ = v−1({γ}). We wan define Tγ as the γ-th
type component, e.g. with the following formula: ∃y1, . . . , yγ−1, (v(y1) < v(y2) < · · · <
v(yγ−1) < v(x) ∧ (∀z, (v(y1) < v(y2) < · · · < v(yγ−1) < v(z)) ⇒ v(x) ≤ v(z)))). It
follows from Lemma 4.4.31 that this is an L-formula without parameter. Now note
that Gγ = {g ∈ G | ∃h ∈ Tγ , g - h} and Gγ = Gγ\Tγ . It follows that Gγ and Gγ are
also ∅-definable. Now let us prove (2). Take γ ∈ Γ, g ∈ Gγ and z ∈ G. Assume that
gz < Gγ . Then v(gz) < v(g). By condition (iv) of Definition 2.2.3, it follows that for all
n ∈N, v(gzn+1) < v(gzn). This contradicts the fact that Γ is finite. Now let us show (3).
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Assume first that γ = 1. Because (G,-) is welding-free, Gγ is convex in (G,-). It then
follows from Proposition 4.4.30 that Gγ and Bγ are weakly C-minimal. Because Gγ is
weakly C-minimal, we can repeat the argument to show that Gγ+1 and Bγ+1 are weakly
C-minimal. The proof of (3) is then done by induction on Γ. The proof in the case of full
C-minimality is similar. Now let us show (4). Let γ ∈ Γ with γ , m and set F := Gγ .
If γ ∈ O, then it directly follows from Proposition 4.3.11 that T−γ = min(Tγ), hence
min(Tγ) , ∅. Assume that γ ∈ V . Then it follows from Theorem 4.3.33(3) that γ+1 ∈ O.
Since we assumed that (G,-) is welding-free, we know that F is convex. By Remark
4.4.20, we can write F = J1 ∪ · · · ∪ Jn, where each Ji is an interval and J1 - · · · - Jn.
Let a, b denote the extremities of Jn. Since γ + 1 ∈ O, F has no maximum. It follows
that b < F . However, we have a ∈ F (otherwise Jn ∩ F = ∅). If there is c � bi with
c < F , then c ∈ Jn, which is a contradiction. Therefore, we must have b ∈ min(Tγ). �

A natural question that arises is whether a (weakly) C-minimal group is a direct
product of its fundamental components. We are now going to show that, if G is abelian,
then this is indeed the case. We recall the following well-known fact from group theory
(see for example [Hal63, Theorem 13.3.1]):

Proposition 4.4.33
Let G be an abelian group and F a divisible subgroup of G. Then F is a direct factor of
G.

We will also use the following:

Proposition 4.4.34
Let F be a normal convex subgroup of G and assume that F is a direct factor of G.
Set H := F/G. Then (G,-) is isomorphic to the valuational product of the family
((H,-), (F,-)).

Proof. It follows easily from the formula given in Proposition 4.2.2 and from the definition
of the valuational product. �

In [MS96], Macpherson and Steinhorn showed that, in the context of dense C-minimal
groups, if min(Γ) is o-type, then G is divisible abelian (see Theorem 4.4.7 (2) above).
Using our results on definable subgroups from Section 4.4.3, we can generalize these
results to general (i.e. not necessarily dense) C-relations:

Proposition 4.4.35
Assume that min(Γ) ∈ O. Then G is divisible abelian.

Proof. Let γ := min(Γ) and take g ∈ Tγ . Let Cg := {h ∈ G | gh = hg}. Cg is a definable
subgroup of G which contains g. It then follows from Lemma 4.4.23 that Cg = Gg = G.
Now let h ∈ G. We just proved that Ch contains g, and since g ∈ O, it follows from
Lemma 4.4.23 that Ch = Gg = G. This proves that G is abelian. Now let n ∈N and set
Gn := {h ∈ G | ∃f ∈ G, fn = h}. Because G is abelian, Gn is a group. Moreover, Gn is
definable, and it contains gn ∈ O. It then follows from Lemma 4.4.23 that Gn = G. �
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Proposition 4.4.36
Assume that (G,-) is abelian. Then G is the direct product of the Bγ ’s. If (G,-)
is welding-free, then (G,-) is isomorphic to the valuational product of the family
(Bγ ,-γ)γ∈Γ.

Proof. We first consider the welding-free case. Let γ := min(Γ). Let us first show that
Gγ is divisible. If γ ∈ V , then it follows from Theorem 4.3.33(3) that γ+1 ∈ O. We know
from Proposition 4.4.32 that Gγ is weakly C-minimal. It then follows from Proposition
4.4.35 that Gγ is divisible. Now assume that γ ∈ O, take g ∈ Gγ and k ∈N. It follows
from Proposition 4.4.35 that G is divisible, so there is h ∈ G with hk = g. Because Bγ is
order-type, it is torsion-free. It follows that, for any f < Gγ , fk < Gγ . It follows that
h ∈ Gγ . This shows that Gγ is divisible.

By Proposition 4.4.33, it follows that Gγ is a direct factor of G. Since (G,-) is
welding-free, Gγ is convex in G. It then follows from Proposition 4.4.34 that (G,-) is
isomorphic to the valuational product of the family ((Bγ ,-γ), (Gγ ,-)). Because Gγ is
weakly C-minimal, we can repeat the same arguments to show that Gγ is isomorphic to
the valuational product of the family ((Bγ+1,-γ+1), (Gγ+1,-)). The proposition then
follows by induction on Γ.

If (G,-) is not welding-free, then consider -∗ as in Proposition 4.4.27. We just proved
that (G,-∗) is the valuational product of the family (Bγ ,-γ)γ∈Γ, which in particular
means that G is the direct product of the Bγ ’s.

�

This allows us to state our main theorem on the structure of C-minimal groups:

Theorem 4.4.37 (structure of C-minimal groups)
Let (G,-) be a C-minimal group. The following holds:

(1) Γ is finite.

(2) Every fundamental component of (G,-) is C-minimal.

(3) If G is abelian, then G is the direct product of its fundamental components. If
moreover (G,-) is welding-free, then (G,-) is isomorphic to the valuational product
of its fundamental components.

(4) If G is not abelian, then min(Γ) ∈ V.

In particular, every abelian welding-free C-minimal group is isomorphic to a valuational
product of C-minimal fundamental C-groups.

Proof. (1) is Proposition 4.4.24. (2) directly follows from Proposition. 4.4.32, and (3)
follows from Proposition 4.4.36. Finally, (4) follows from 4.4.35. �

Remark 4.4.38: Theorem 4.4.37 does not say anything about welding. In particular,
it would be interesting to know under which condition welding can exist in a C-minimal
group. So far, we do not know any example of C-minimal group with welding.
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4.4.5 Products of C-minimal groups

We now want to give an example of a C-minimal group whose C-relation is neither
order-type nor valuational. For this, we show that the product of an o-minimal group
with a finite valued group is C-minimal. We first need to show the following lemma:

Lemma 4.4.39
Let (F,-) be a C-q.o. group and (H,-) a valuationally quasi-ordered group such that
H\{1} has a minimum m and set G := H × F . Then for any boolean combination
φ(x, āH) of balls with āH ⊆ H, there exists a boolean combination φ∗(x, ā,m) of balls
with ā ⊆ G such that for any g = (h, f) ∈ G, G � φ∗(g, ā,m) if and only if H � φ(h, āH).

Proof. It is sufficient to show the lemma in the case where φ is a ball. Assume then
that φ(x) ≡ xa−1

H - bH . If bH , 1, then by definition of the valuational product,
ha−1

H - bH is equivalent to g.(a−1
H , 1) - (bH , 1) for any g ∈ G, so we can just set

φ∗(x) ≡ x.(a−1
H , 1) - (bH , 1). If bH = 1, then ha−1

H - bH is true if and only if g.(a−1
H , 1) ∈ F

which is equivalent to g.(a−1
H , 1) � m, so we can set φ∗(x) ≡ x.(a−1

H , 1) � m. Assume now
that φ(x) ≡ xa−1

H � bH . If bH = 1, then φ(x) is not satisfiable in H by (CQ1), so we set
φ∗(x) ≡ x � 1. If bH , 1, we can set φ∗(x) ≡ x.(a−1

H , 1) � (bH , 1). It follows from the
definition of the valuational product that φ∗ has the desired property. �

Lemma 4.4.40
Let (G,-) be a C-q.o. group. Assume that F is a ∅-definable subgroup of G and that F
has a finite group complement in G. Let φ(x) be a formula defining F , (G′,-) a C-q.o
group with (G,-) ≡ (G′,-) and let F ′ = φ(G′). Then F ′ has a finite group complement
in G′.

Proof. Let H denote a finite group complement of F . Set n := |H|. Let ψ be the formula
saying “there exists a finite subset X of G of size n such that X is a group, X ∩φ(G) = 1
and for all z there exists x, y such that z = yx, φ(y) holds and x ∈ X”. Then G satisfies
ψ (with X = H). It follows that G′ satisfies ψ. But ψ precisely expresses the fact that
F ′ has a finite group complement of size n in G′. �

Proposition 4.4.41
Let (F,-) be C-minimal order-type C-q.o. group and (H,-) a finite valuationally
quasi-ordered group. Then G := H × F is C-minimal.

Proof. Note that any finite C-q.o. group is C-minimal, so in particular H is C-minimal.
Moreover, H\{1} admits a minimum which we will denote by m. We first show that
(G,-) is weakly C-minimal. Let φ(x, ā) be a formula of L with one free variable and
parameters ā = (āH , āF ) ⊆ G. Take φF1 (x̄), . . . , φFn (x̄), φH1 (x̄), . . . , φHn (x̄) as in Lemma
4.4.12. By Lemma 4.4.12, it is sufficient to show that for each i ∈ {1, . . . , n}, the set Ai :=
{(h, f) ∈ G | F � φFi (f, āF ) ∧H � φHi (h, āH)} is a boolean combination of balls. Fix an
i ∈ {1, . . . , n}. Since F and H are C-minimal, there are two formulas θF (x, b̄F ), θH(x, b̄H)
(with parameters b̄F ⊆ F and b̄H ⊆ H) which are boolean combinations of balls such
that F � ∀x(φFi (x, āF )⇔ θF (x, b̄F )) and H � ∀x(φHi (x, āH)⇔ θH(x, b̄H)). For any g =
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(h, f) ∈ G, we now have g ∈ Ai if and only if F � θF (f, b̄F ) and H � θH(h, b̄H). Now note
that F � θF (f, b̄F ) if and only if G � ∧

h′∈H(g.(h′, 1)−1 � m⇒ θF (g.(h′, 1)−1, b̄F )) (this
follows from the fact that (1, f) = g.(h′, 1)−1 if and only if g.(h′, 1)−1 ∈ F if and only if
g.(h′, 1)−1 � m). Note also that the formula ∧

h′∈H(x.(h′, 1)−1 � m⇒ θF (x.(h′, 1)−1, b̄F ))
is still a boolean combination of balls. Finally, take θ∗H(x, b̄,m) as given by Lemma 4.4.39.
The formula θ∗H(x, b̄,m) ∧ ∧

h′∈H(x.(h′, 1)−1 � m ⇒ θF (x.(h′, 1)−1, b̄F )) is a boolean
combination of balls which defines Ai. This proves that (G,-) is weakly C-minimal. Now
we must show that the same is true for G2, where G2 is an arbitrary C-q.o. group with
G2 ≡ G. Note that F is a definable subgroup of G because it is the set of o-type elements
of G. Now denote by F2 the set of o-type elements of G2 and H2 := G2/F2. It follows
from Proposition 4.4.11 that F2 ≡ F and H2 ≡ H. By assumption, it follows that F2
and H2 are C-minimal. Moreover, it follows from Lemma 4.4.40 that H2 is finite and
that G2 � H2×F2. By what we just proved, we know that H2×F2 is weakly C-minimal,
so G2 is weakly C-minimal. �

Remark 4.4.42: The condition ofH being finite was essential in the proof of Proposition
4.4.41. Indeed, the assumption that F is C-minimal only tells us that the set B of all
f ’s such that g = (h, f) ∈ Ai is a boolean combination of balls, so it gives us a formula
θF (f, b̄F ) in which f appears. We then need to characterize the g’s of G such that
f ∈ B with an appropriate formula, i.e we need to “lift” θF (f, b̄F ) to a formula in
which g appears instead of f . The problem is that f is in general not definable in G
if H is chosen arbitrarily, so we cannot express “f ∈ B” with a formula. However,
if we happen to know that the h’s of all g’s in Ai only take finitely many values in
H (as is the case in Proposition 4.4.41), then we can express “f ∈ B” via a formula∧
h′(g(h′, 1)−1 � m⇒ θF (g(h′, 1)−1, b̄F )), where h ranges over all possible values of h for

g in Ai.

We can now give an example of a C-minimal group which is neither ordered nor
valued:

Example 4.4.43
Let F := Q with the usual order; it is known that this is an o-minimal structure. Set
H := (Z/pkZ, vp) with k ∈ N, where vp denotes the valuation induced on H by the
p-adic valuation of Z. Then by Proposition 4.4.41, H × F is C-minimal.
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Chapter 5

Differential-valued fields and
power series

Introduction
The object of this chapter is to introduce and characterize a notion of differential rank for
differential-valued fields. We start by defining a general notion of φ-rank for a valued field
endowed with an operator φ in Section 5.1. Our motivation for introducing this notion of
φ-rank is to provide a common framework for the several already existing notions of rank,
which later motivates our definition of the differential rank of a differential-valued field.
Our notion of φ-rank generalizes the three notions of rank which we know: the classical
rank of a valued field (without any operator), the exponential rank of an exponential
ordered field studied in [Kuh00] and the notion of difference rank for a difference field
introduced in [KMP17].

Section 5.2 is dedicated to the study of asymptotic couples. We introduce the notion
of cut point (Definition 5.2.2), which allows us to describe the behavior of the map ψ of
an asymptotic couple. A cut point c separates the group in two parts, on each of which
the behavior of ψ is very different. Roughly speaking, ψ acts like a contraction on the
set of elements which are infinitely bigger than c, whereas all elements between 0 and
c have an image under ψ which is close to ψ(c) (see Proposition 5.2.4). The notion of
cut point is related to the notion of gap defined in [AvdD02a] (see Lemma 5.2.9). These
results on the behavior of ψ have important consequences for the differential rank.

In Section 5.3, we use Section 5.1 to introduce the differential rank (Definition 5.3.1)
and give several characterizations of it (see Theorems 5.3.3, 5.3.5 and 5.3.11). It turns out
that the differential rank is too coarse to describe the whole structure of the differential-
valued field. This problem is connected to the notion of cut point. Indeed, if c is a cut
point, then the differential rank gives no information on the behavior of ψ on the set
of elements “below” c. For this reason, we introduce a notion of “unfolded” differential
rank in Section 5.3.2 (see Definition 5.3.14), which extends the differential rank. More
precisely, the differential rank is a final segment of the unfolded differential rank (see
Proposition 5.3.17). We then connect the unfolded differential rank to the notion of
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exponential rank (Corollary 5.3.22).
In Section 5.4, we tackle the problem of defining a derivation on generalized power

series. In Section 5.4.1, we give a method to “lift” the map ψ of an asymptotic couple
(G,ψ) to a derivation on a field of power series k((G)). Theorem 5.4.12 gives necessary
and sufficient conditions on (G,ψ) and k for this method to work. In Sections 5.4.2 and
5.4.3, we show that the existence of a ψ on G is connected to the notion of shift (see
Definition 5.4.15). Using Theorem 5.4.12, this allows us to construct derivations on fields
of power series from a shift on its value chain Γ (see Theorems 5.4.19 and 5.4.22). Finally,
in Section 5.4.4, we use Theorem 5.4.12 to realize a given pair of ordered sets as the
differential rank and the unfolded differential rank of a field of power series endowed with
a Hardy-type derivation (Theorem 5.4.28).

We refer to Section 2.3 for our notations and conventions on valued fields. All groups
considered in this chapter are abelian and will thus be denoted additively.

5.1 The φ-rank of a valued field
In this section, we develop the general theory of the rank of a field endowed with an
operator φ. For us, a partial map on a set A is a map from some subset B of A to
A. The domain of a partial map φ is denoted by Domφ. The identity map of a set will
always be denoted by id.

The classical rank of a valued field K v−→ G
vG−→ Γ is characterized on three different

levels: at the level of the field K itself, at the level of its value group G and at the level
of the valuation chain Γ (see Proposition 2.3.2). This is why we now want to define three
notions of φ-ranks: one for quasi-ordered sets, one for ordered groups and another one
for valued fields. Using quasi-orders instead of orders at the level of the set will be useful
to give a certain characterization of the differential rank, see Theorem 5.3.5.

We first define the notion of rank of a quasi-ordered set. Let (A,-) be a q.o. set.

Definition 5.1.1
The rank of the q.o. set (A,-) is the order type of the set of all final segments of
(A,-), ordered by inclusion. A final segment B of (A,-) is called a principal final
segment of B if there is a ∈ A such that B = {b ∈ A | a - b}. The principal rank of
the q.o. set (A,-) is the order type of the set of principal final segments of (A,-).

Note that the rank of (A,-) is the same as the rank of (A/ ∼,≤), where ≤ is the
order induced by - on A/ ∼. Note also that the principal rank of (A,-) is isomorphic
to (A/ ∼,≤∗), where ≤∗ is the reverse order of ≤ (this is given by the order-reversing
bijection a 7→ {b ∈ A | a - b} from A/ ∼ to the set of principal final segments of A).

We now define three notions of φ-rank:

Definition 5.1.2 (φ-rank for q.o. sets)
Let (A,-) be a q.o. set and φ a partial map on a set A. We say that a subset B of A is
compatible with φ, or φ-compatible, if for any a ∈ A ∩ Domφ, a ∈ B ⇔ φ(a) ∈ B.
If (A,-) is a quasi-ordered set, φ a partial map on A and b ∈ A, we say that B ⊆ A

124



Lehéricy Gabriel - Thèse de doctorat - 2018

is the φ-principal final segment of (A,-) generated by b if B is the smallest φ-
compatible final segment of (A,-) containing b. We say that a final segment B of (A,-)
is φ-principal if there is some b ∈ A such that B is φ-principal generated by b. We then
define the φ-rank (respectively, the principal φ-rank) of the quasi-ordered set (A,-)
as the order type of the set of φ-compatible (respectively, φ-principal) final segments of
(A,-), ordered by inclusion.

Definition 5.1.3 (φ-rank for ordered groups)
If (G,≤) is an ordered abelian group with a partial map φ, we say that H is the φ-
principal convex subgroup of G generated by g if H is the smallest φ-compatible
convex subgroup of G containing g. We define the φ-rank (respectively, the principal
φ-rank) of the ordered group (G,≤) as the order type of the set of convex φ-compatible
(respectively, φ-principal) non-trivial subgroups of (G,≤).

Definition 5.1.4 (φ-rank for valued fields)
If (K, v) is a valued field with a partial map φ, we say that a coarsening w of v is
φ-compatible if Uw is φ-compatible as a set. We say that w is the φ-principal
coarsening of v generated by a if Ow is the smallest overring of Ov containing a
such that w is φ-compatible. We define the φ-rank (respectively, the principal φ-rank)
of the valued field (K, v) as the order type of the set of φ-compatible (respectively,
φ-principal) strict coarsenings of v.

Example 5.1.5 (a) The rank of a q.o. set (A,-) is equal to its id-rank.

(b) Let K v−→ G
vG−→ Γ be a valued field. Then the classical rank of (K, v) as a valued

field is the id-rank of the valued field (K, v). It is known that it is also equal to the
id-rank of the ordered group (G,≤) and to the id-rank of the ordered set (Γ,≤).

(c) Let (K,≤, exp) be an ordered field endowed with a (GA), (T1)-exponential as defined
in [Kuh00]. Let φ be the logarithm exp−1 restricted toK>0\Ov, where v is the natural
valuation associated to ≤. One can easily check that our notion of compatibility
coincides with the notion of compatibility defined in [Kuh00]. In particular, a
coarsening w of v satisfies our definition of compatibility with φ if and only if the
logarithm is compatible with w in the sense of [Kuh00]. It follows that the exponential
rank of (K,≤, exp) is the φ-rank of the valued field (K, v).

(d) Let (K, v, σ) be a valued difference field. Then one can check that a coarsening w
of v satisfies our condition of σ-compatibility if and only if w is σ-compatible in
the sense of [KMP17]. It follows that the σ-rank of (K, v, σ) defined in [KMP17]
coincides with our definition of the σ-rank of the valued field (K, v).

(e) S. Kuhlmann showed in [Kuh00] that the exponential rank of (K,≤, exp) is also equal
to the χ-rank of (G,≤), where χ is the map induced by the logarithm on the value
group G of (K, v). She also showed that it is equal to the ζ-rank of (Γ,≤), where ζ
is the map induced by χ on Γ. She together with F. Point and M. Matusinski also
showed similar results for difference fields in [KMP17] (see Section 2.3).
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Remark 5.1.6: (i) Let (A,-) be a q.o. set and φ a partial map on A. By definition,
the φ-principal rank of (A,-) is a totally ordered set (Γ,≤). It is easy to see that
the φ-rank of (A,-) is then equal to the rank of (Γ,≤). This shows in particular
that the principal φ-rank completely determines the φ-rank. This remark still
applies if we replace (A,-) by an ordered group or by a valued field.

(ii) Let R denote the set of φ-compatible final segments of (A,-) and let B ⊆ A.
Then B is a φ-principal final segment if and only if there exists a ∈ A such that
B = ⋂

a∈C∈R
C.

Following Example 5.1.5 (e), we now want to show that the φ-rank of a valued field
with an operator φ can be characterized at three different levels, as happens in the
classical case. This can only be done if φ induces a map on the value group, which is
why we need the following definition:

Definition 5.1.7
We say that a map φ is consistent with a valuation v if v(a) = v(b)⇒ v(φ(a))) = v(φ(b))
for all a, b ∈ Dom(φ).

Let K v−→ G
vG−→ Γ be a valued field and φ a partial map on K. If φ is consistent

with v, then φ naturally induces a partial map on G defined by φG(v(a)) = v(φ(a)). If
φG is consistent with vG, then it induces a partial map φΓ on Γ defined by φΓ(vG(g)) =
vG(φG(g)). We then have the following result:

Proposition 5.1.8
Let K v−→ G

vG−→ Γ be a valued field and φ a partial map on K. Assume that φ is
consistent with v. Then the φ-rank (respectively, the principal φ-rank ) of the valued field
(K, v) is equal to the φG-rank (respectively, the principal φG-rank) of the ordered group
(G,≤), where φG is the partial map of G induced by φ. If moreover φG is consistent
with vG, then the φ-rank (respectively, the principal φ-rank ) of the valued field (K, v) is
also equal to the φΓ-rank (respectively, the principal φΓ-rank) of the ordered set (Γ,≤),
where φΓ denotes the partial map of Γ induced by φG.

Proof. We already know (see [Kuh00, chapter 3, Section 1]) that there is an inclusion-
preserving bijection Ξ : w 7→ Gw := v(Uw) between the set of coarsenings of v and
the set of convex subgroups of G. Now note that, for any a ∈ K and g := v(a), we
have a ∈ Domφ ⇔ g ∈ DomφG, a ∈ Uw ⇔ g ∈ Gw and φ(a) ∈ Uw ⇔ φG(g) ∈ Gw. It
immediately follows that w is φ-compatible if and only if Gw is φG-compatible. This
in turn implies that w is φ-principal generated by a if and only if Gw is φG-principal
generated by v(a). Therefore, the map Ξ restricted to the set of φ-compatible coarsenings
of v gives us an order-preserving bijection from the φ-rank of the valued field (K, v) to
the φG-rank of the ordered group (G,≤). Moreover, the map Ξ restricted to the set of
φ-principal coarsenings of v gives us an order-preserving bijection from the principal
φ-rank of the valued field (K, v) to the principal φG-rank of the ordered group (G,≤).
This proves the first part of the Proposition. We could use an analogous proof to show
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that there is a bijection between φG-compatible convex subgroups of G and φΓ-compatible
final segments of Γ (using the map Gw 7→ vG(Gw\{0})). �

Example 5.1.9 (a) Consider an ordered exponential field (K,≤, exp) satisfying axioms
(GA), (T1) of [Kuh00] and denote by v its natural valuation. Define φ as the logarithm
log := exp−1 restricted to K>0\Ov. One easily sees that φ is consistent with v. The
induced map on G is the contraction map χ studied in [Kuh00]. It then follows from
Proposition 5.1.8 that the exponential rank of K is equal to the χ-rank of G, as
stated in [Kuh00].

(b) Applying Proposition 5.1.8 to the case where φ = σ is a field automorphism, we
recover Theorem 2.3.5.

In [KMP17], the authors characterized the difference rank of a difference field in terms
of an equivalence relation induced by σ (see Theorem 2.3.6 above). We will now give a
proposition which will later allow us to prove similar results for the notion of differential
rank. Assume then that (A,-) is a quasi-ordered set and that φ is an increasing map on
A with Domφ = A.

We associate the following relations to φ:
a -φ b⇔ ∃n, k ∈N0 φn(a) - φk(b).
a ∼φ b⇔ a -φ b ∧ b -φ a.

Proposition 5.1.10
The relation -φ is a quasi-order on A and a coarsening of -. Moreover, for any --convex
subset B of A the following statements are equivalent:

(1) B is φ-compatible.

(2) B is -φ-convex.

(3) B is ∼φ-closed, in the sense that for any a, b ∈ A with a ∼φ b, a ∈ B ⇔ b ∈ B.

In particular, the φ-rank of (A,-) is equal to the rank of (A,-φ) and the principal φ-rank
of (A,-) is equal to the principal rank of (A,-φ).

Proof. We start by showing the following:

Claim: If a -φ b and b -φ c, then there are j, k, n ∈N0 with φk(a) - φj(b) - φn(c).

Proof. By definition of -φ there are k, l,m, n ∈N0 with φk(a) - φl(b) and φm(b) - φn(c).
Assume that l ≤ m. Since φ is increasing, φk(a) - φl(b) implies
φk+m−l(a) - φm(b) - φn(c), hence the claim. If m < l, then φm(b) - φn(c) implies
φk(a) - φl(b) - φn+l−m(c). �
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Now we prove the proposition. Obviously, -φ is reflexive and total because - is, and
thanks to the claim -φ is also transitive, so -φ is a quasi-order. Note that ∼φ is the
equivalence relation induced by the q.o. -φ. Now let B be --convex. By definition of
convexity, (2) implies (3). Since a ∼φ φ(a) is true for all a, (3) implies (1). Now let us
prove that (1) implies (2), so assume B is φ-compatible. Let a, c ∈ B and b ∈ A such
that a -φ b -φ c. By the claim, there are j, k, n ∈N0 with φk(a) - φj(b) - φn(c). Since
B is φ-compatible, we have φk(a), φn(c) ∈ B. Since B is --convex, φk(a) - φj(b) - φn(c)
implies φj(b) ∈ B. By φ-compatibility, this implies b ∈ B. This shows that B is
-φ-convex.

Now let us prove the last statement. We show that a subset B of A is a final segment of
(A,-φ) if and only if it is a φ-compatible final segment of (A,-). Let B be a φ-compatible
final segment of (A,-). Let b ∈ B and a ∈ A with b -φ a. If b ∼φ a then since (1) implies
(3) we have a ∈ B. If b �φ a, then since -φ is a coarsening of - we must have b � a.
Since B is a final segment of (A,-), it follows that a ∈ B. This shows that B is a final
segment of (A,-φ). Conversely, assume that B is a final segment of (A,-φ). Since -φ
is a coarsening of - then B must also be a final segment of (A,-). In particular, B is
--convex and -φ-convex. Since (2) implies (1), B must be φ-compatible. This shows
that the φ-rank of (A,-) is equal to the rank of (A,-φ). It then follows from Remark
5.1.6(ii) that the principal φ-rank of (A,-) is equal to the principal rank of (A,-φ). �

Remark 5.1.11: By applying Proposition 5.1.10 to the case of difference fields, we
recover Theorem 2.3.6. Our relation ∼φ corresponds to ∼σΓ in [KMP17] and to ∼ζ in
[Kuh00].

5.2 Asymptotic couples and cut points
This section is dedicated to the study of asymptotic couple, and more precisely of the
behavior of the map ψ. We introduce the notion of cut point (Definition 5.2.2), which
plays a central role in the description of ψ. These results will be extremely important for
the study of the differential rank in Section 5.3. We refer to Section 2.4 for the definition
of asymptotic couple.

Notation
In all this section, (G,ψ) is an asymptotic couple. We will denote by ≤ the order of G, by
vG the archimedean valuation associated to (G,≤) and by - the quasi-order induced by
vG, i.e the q.o. defined by g - h⇔ vG(g) ≥ vG(h). For any g, h ∈ G, we write g � h if
and only if g ∼ h and g has the same sign as h. Note that “�” is an equivalence relation.
We set G,0 := G\{0}, G>0 := {g ∈ G | 0 < g} and G<0 := {g ∈ G | g < 0}. If g ∈ G and
H ⊆ G, we write g < H to mean that g < h for all h ∈ H. Note that if H is a convex
subgroup this implies h � g for all h ∈ H. We denote by Ψ the set ψ(G,0)). If (G,ψ)
happens to be H-type, then ψ is consistent with vG, in which case we will denote by ω
the map induced by ψ on Γ. Finally, DG denotes the map DG : G,0 → G, g 7→ g + ψ(g).

We recall the following result from [AvdD02a, Proposition 2.3]:
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Lemma 5.2.1
Let (G,ψ) be an asymptotic couple and g, h ∈ G,0 with g , h. Then ψ(g)−ψ(h) � g−h.

We also define the following notion:

Definition 5.2.2
Let c ∈ G. we say that c is a cut point for ψ if ψ(g) � g ⇔ c � g for any g ∈ G,0. A
cut point c for ψ is called regular if c = 0 or if c , 0 has the same sign as ψ(c).

The notion of cut point will play an essential role in the study of the differential rank,
which is why the next results are crucial. Note that, for any g, h ∈ G, g � h implies
g + h � h. Note also that g − h � h implies g � h.

Lemma 5.2.3
The following holds:

(i) For any g ∈ G,0 with g - ψ(g), we have h - ψ(g) ⇒ ψ(h) − ψ(g) � ψ(g), and in
particular h - ψ(g)⇒ ψ(g) � ψ(h).

(ii) For any c ∈ G,0, c is a cut point for ψ if and only if ψ(c) ∼ c, and c is a regular
cut point if and only if c � ψ(c).

(iii) For any c, g ∈ G, if c is a cut point for ψ, then g is a cut point for ψ if and only if
g ∼ c.

(iv) For any g ∈ G,0, if g - ψ(g), then ψ(g) is a regular cut point for ψ.

(v) If (G,ψ) is H-type and c ∈ G,0 is a cut point for ψ, then ψ(c) is a fixpoint of ψ.

Proof. For (i): By Lemma 5.2.1, we have ψ(h)− ψ(g) � h− g. If h - g, then h− g - g,
hence ψ(h)−ψ(g) � ψ(g). This implies in particular that ψ(h) � ψ(g). For (ii): Assume
c is a cut point. By Definition 5.2.2, we have c - ψ(c), hence by (i): ψ(ψ(c)) ∼ ψ(c). If
c � ψ(c) were true, then Definition 5.2.2 would imply ψ(ψ(c)) � ψ(c), which is impossible.
Thus, we must have ψ(c) ∼ c. Conversely, assume ψ(c) ∼ c and let h ∈ G with c � h.
If h - ψ(h) were true, then (i) would imply ψ(c) ∼ ψ(h), hence h - c, a contradiction.
Therefore, ψ(h) � h must hold. Now take h - c. Then we have h - ψ(c), which
by (i) implies ψ(h) ∼ ψ(c), hence h - ψ(h). This proves that c is a cut point. (iii)
follows directly from Definition 5.2.2. For (iv): Let 0 , g - ψ(g). Then by (i), we have
ψ(ψ(g)) � ψ(g). By (ii), this means that ψ(g) is a cut point. For (v): by (ii), we have
c ∼ ψ(c). Since (G,ψ) is H-type, ψ is constant on archimedean classes of G, so c ∼ ψ(c)
implies ψ(c) = ψ(ψ(c)).

�

We can now show that every asymptotic couple admits a cut point, and describe the
behaviors of the maps ψ and DG on G:

Proposition 5.2.4
Let (G,ψ) be an asymptotic couple. Then G admits a regular cut point for ψ. Moreover,
for any regular cut point c and any g , 0, the following holds:
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(1) If g - c , 0, then ψ(g)− ψ(c) � c and in particular ψ(g) � c.

(2) If g � c , 0, then DG(g) � c.

(3) If 0 , g ∼ c, then DG(g) - c

(4) If c � g, then ψ(g) � g and DG(g) � g.

Proof. Assume 0 is not a cut point. This means there is g ∈ G,0 with g - ψ(g), which by
Lemma 5.2.3 (iv) means that ψ(g) is a regular cut point for ψ. Now let c be a regular cut
point for ψ and 0 , g. (1) follows from Lemma 5.2.3 (i) and (ii). For (2): By (1), we have
g � ψ(g). It immediately follows that g+ψ(g) � ψ(g), which by (1) implies g+ψ(g) � c.
For (3): By (1), we have ψ(g) ∼ g, so the ultrametric inequality implies ψ(g) + g - g.
For (4): ψ(g) � g follows from Definition 5.2.2. It then follows that ψ(g) + g � g. �

We now want to show that cut points can be used to characterize compatibility of
convex subgroups of G with ψ. This will be given by Proposition 5.2.7.

Lemma 5.2.5
If c , 0 is a cut point and g ∈ G,0 is such that c � ψ(g), then ψ(g) is negative. In
particular, ψ(g) > 0 implies that ψ2(g) is a non-zero cut point for ψ.

Proof. By Lemma 5.2.3(ii) and the ultrametric inequality, we have ψ(c) + |c| - c. If
ψ(g) > 0, then c � ψ(g) implies ψ(c) + |c| < ψ(g) which contradicts (AC3). Thus,
ψ(g) > 0 implies ψ(g) - c, which by Proposition 5.2.4(1) implies ψ2(g) ∼ c. Since c , 0,
it follows that ψ2(g) , 0. By Lemma 5.2.3(iii), ψ2(g) is then a non-zero cut-point for
ψ. �

Lemma 5.2.6
Assume c ∈ H. Then g ∈ H ⇒ ψ(g) ∈ H.

Proof. Assume g ∈ H. If g - c, then Proposition 5.2.4(1) implies ψ(g) ∼ c. Since
c ∈ H, it follows from the convexity of H that ψ(g) ∈ H. If c � g, then it follows from
Proposition 5.2.4(4) that ψ(g) � g. Since g ∈ H, it follows from the convexity of H that
ψ(g) ∈ H. �

Proposition 5.2.7
Let c be a cut point for ψ and H a non-trivial convex subgroup of G. Then H is
compatible with ψ if and only if the following two conditions hold:

(1) c ∈ H.

(2) For any g ∈ G with c � g, ψ(g) ∈ H ⇒ g ∈ H.

Moreover, if H is compatible with ψ, then ψ(g) < H for any g ∈ G\H.
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Proof. Assume that H is compatible with ψ. Then clearly (2) is true. Towards a
contradiction, assume that c < H and take g ∈ H. By convexity of H, we have g � c.
By Proposition 5.2.4(1), this implies ψ(g) ∼ c. It follows from the convexity of H that
ψ(g) < H, which contradicts the fact that H is ψ-compatible. This proves that (1) must
hold. Conversely, assume (1) and (2) and let us prove that H is compatible with ψ. It
follows from condition (1) and from Lemma 5.2.6 that g ∈ H ⇒ ψ(g) ∈ H. Now assume
that ψ(g) ∈ H and let us show g ∈ H. If c � g, this follows from condition (2). If g - c,
then since c ∈ H it follows from convexity of H that g ∈ H. This proves that H is
compatible with ψ. Now let g ∈ G\H. Then ψ(g) < H, and since c ∈ H, the convexity
of H implies c � ψ(g). It follows from Lemma 5.2.5 that ψ(g) is negative. By convexity
of H, we then have ψ(g) < H.

�

Proposition 5.2.4 shows that the behavior of ψ is particularly simple if 0 is the cut
point for ψ (note that if 0 is a cut point for ψ then it is the only cut point). Indeed, in
that case, ψ acts like a contraction map on G<0 (see Section 2.3 for the definition of
contraction). Therefore, it can be practical to transform a given map ψ into another
map ψ′ which has 0 as a cut point. One way of doing that is to translate ψ by a gap or
by the maximum of Ψ if it exists. We recall that a gap for ψ is an element g ∈ G such
that Ψ < g < DG(G>0). Aschenbrenner and v.d.Dries showed that the existence of a gap
or of a maximum of Ψ is connected to the existence of asymptotic integration in (G,ψ).
We recall the following results (see [AvdD02a, Proposition 2.2 and Theorem 2.6]):

Proposition 5.2.8
Let (G,ψ) be an asymptotic couple. The following holds:

(1) ψ has at most one gap.

(2) G\DG(G,0) has at most one element.

(3) If g is a gap for ψ or the maximum of Ψ then G\DG(G,0) = {g}. In particular, if
(G,ψ) has asymptotic integration, then Ψ has no maximum and ψ has no gap.

Gaps and maximum of Ψ are connected to our notion of cut point; more precisely, we
have the following:

Lemma 5.2.9 (i) If 0 is a cut point for ψ, then 0 = sup Ψ and (G,ψ) does not have
asymptotic integration.

(ii) If g is a gap for ψ or the maximum of Ψ, then g is a regular cut point for ψ.

Proof. Let us prove (i). Since 0 is the cut point, Proposition 5.2.4(4) implies that
DG(h) ∼ h for all h ∈ G,0. This implies in particular that 0 < DG(G,0), which proves
that (G,ψ) does not have asymptotic integration. Assume there is g with ψ(g) > 0 and
take h ∈ G,0. By (AC3), we have 0 < ψ(g) < DG(|h|), which implies ψ(g) - DG(|h|).
Since DG(|h|) ∼ h, we thus have ψ(g) - h for all h , 0. It follows that ψ(ψ(g)) = 0
(otherwise, taking h := ψ(ψ(g)), we would have ψ(g) - ψ(ψ(g)), which contradicts the
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fact the 0 is the cut point). But by (AC3), we have ψ(g) < ψ(ψ(g)) + ψ(g), hence
ψ(g) < ψ(g), a contradiction. Thus, sup Ψ ≤ 0. For any g < 0, since 0 is a cut point we
have g < ψ(g) < 0, hence sup Ψ = 0.

Now let us prove (ii). Let c be a regular cut point for ψ. If c = 0, then by (i) we must
have g = 0 = c. Assume c , 0. Assume first that vG(c) , max Γ. Then there is h ∈ G,0

such that h � c. By Proposition 5.2.4(2) and Lemma 5.2.3(ii), DG(|h|) � c � ψ(c). By
assumption on g, we have ψ(c) ≤ g < DG(|h|). It follows that g � c. By Proposition
5.2.4(1), ψ(g) � c. It follows that ψ(g) � g, which by Lemma 5.2.3(ii) means that g is a
regular cut point. Now assume that vG(c) = max(Γ). It follows from Proposition 5.2.4(1)
that ψ(h) = ψ(c) for any h with h ∼ c. Take h such that 0 < h ≤ |ψ(c)|. Then h ∼ c,
and DG(h) = h+ ψ(h) = h+ ψ(c) has the same sign as ψ(c). By assumption on g, we
have ψ(c) ≤ g < DG(h). It follows that g ∼ c, hence ψ(g) = ψ(c). In particular, g has
the same sign as ψ(g) and g ∼ ψ(g). This shows that g is a regular cut point.

�

As we mentioned above, if a gap or a maximum of Ψ exists, then we can transform ψ
into a map which has 0 as a cut point. This will become important in Section 5.3.2:

Lemma 5.2.10
Assume that c ∈ G is either a gap for ψ or the maximum of Ψ. Define ψ′(g) := ψ(g)− c.
Then 0 is a cut point for ψ′.

Proof. Just note that 0 is a gap for ψ′ or a maximum of Ψ′, so the claim follows from
Lemma 5.2.9(ii). �

We now want to focus on the case where (G,ψ) is H-type. In that case, there is a
canonical choice for a regular cut point, namely the fixpoint of ψ:

Lemma 5.2.11
Assume (G,ψ) is H-type. Then 0 is a cut point for ψ if and only if ψ has no fixpoint. If
ψ has a fixpoint, then it is unique and it is a regular cut point for ψ. Moreover, if ψ has
a negative fixpoint, then ψ only takes negative values.

Proof. If 0 is a cut point then by definition ψ(g) � g holds for every g , 0 so ψ has
no fixpoint. If c is a cut point with c , 0, then by Lemma 5.2.3(v) ψ(c) is a fixpoint
of ψ. If d is another fixpoint then by Lemma 5.2.3(ii) it must be a cut point, so by
Lemma 5.2.3(iii) d ∼ ψ(c), but since (G,ψ) is H-type this implies ψ(ψ(c)) = ψ(d) hence
ψ(c) = d. This proves the uniqueness of the fixpoint. If c is the fixpoint of G, then we
have in particular c � ψ(c) which by Lemma 5.2.3(ii) implies that c is a regular cut
point. Finally, assume c < 0. Since c = ψ(c) is a cut point, we have ψ(g) < 0 for any
g - c by Proposition 5.2.4(1). Now take g with c � g. Since (G,ψ) is H-type, we have
ψ(g) ≤ ψ(c) = c < 0. Thus, ψ(g) is negative for every g. �

Proposition 5.2.4(1) and (4) allows us to describe the behavior of the map ω:
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Lemma 5.2.12
Let (G,ψ) be a H-type asymptotic couple and denote by ω the map induced by ψ on Γ.
Let c be a cut point for ψ and α := vG(c). Then we have ω(γ) > γ for all γ with γ < α
and ω(γ) = α for all γ ∈ Γ with α ≤ γ.

Proof. It follows directly from Proposition 5.2.4. �

In the H-type case, the existence of a gap is part of a trichotomy (see [Geh17, Lemma
2.4]):

Proposition 5.2.13
Let (G,ψ) be a H-type asymptotic couple. Then exactly one of the following holds:

(1) ψ has a gap.

(2) Ψ has a maximum.

(3) (G,ψ) admits asymptotic integration.

Sometimes, it is practical to work with an asymptotic couple where ψ only takes
negative values. The next lemma will be useful in that regard, especially for the proof of
Theorem 5.3.5:

Lemma 5.2.14
Let (G,ψ) be a H-type asymptotic couple. There exists x ∈ G≤0 such that, if ψ̂ denotes
the map ψ̂ := ψ+x, α := vG(x) and ω̂ is the map induced by ψ̂ on Γ, the following holds:

(i) The ψ-rank (respectively, the principal ψ-rank) of (G,≤) is equal to the ψ̂-rank
(respectively, the principal ψ̂-rank) of (G,≤).

(ii) ψ̂(g) < 0 for all g ∈ G,0.

(iii) for all γ ∈ Γ, ω̂(γ) = min(α, ω(γ)).

(iv) For any γ, δ ∈ Γ, α ≤ γ ∧ α ≤ δ ⇒ α ≤ ω(γ) = ω(δ).

Proof. If ψ(g) < 0 for all g , 0 then we can take x = 0, so assume that there is g with
ψ(g) ≥ 0. We distinguish two cases:

(1) 0 = max Ψ. In that case set c = 0 and choose x < 0 with ψ(x) = 0.

(2) there exists g with ψ(g) > 0. In that case define c as the fixpoint of ψ (which exists
and is positive by Lemma 5.2.11) and set x := −2c.

Note that in both cases, c is a cut-point for ψ, x is a cut point for ψ̂ (because
ψ̂(x) ∼ x), ψ(x) = c and c - x. Let us show (i). We use Proposition 5.2.7. Assume
then that H is ψ-compatible. Then by Proposition 5.2.7 c ∈ H. Since ψ(x) = c, it
follows by ψ-compatibility of H that x ∈ H. Now take g with ψ̂(g) ∈ H. We have
ψ(g) = ψ̂(g)−x, hence ψ(g) ∈ H. By ψ-compatibility, this implies g ∈ H. By Proposition
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5.2.7, this proves that H is ψ̂-compatible. Conversely, assume that H is ψ̂-compatible.
By Proposition 5.2.7, x ∈ H, and since c - x it follows by convexity that c ∈ H. Now
take g ∈ G with ψ(g) ∈ H. Then ψ̂(g) = ψ(g) +x ∈ H, which by ψ̂-compatibility implies
g ∈ H. It follows by Proposition 5.2.7 that H is ψ-compatible. We showed that H is
ψ-compatible if and only if it is ψ̂-compatible. It then follows from Remark 5.1.6(ii) that
H is ψ-principal if and only if it is ψ̂-principal.

Now let us show (ii),(iii),(iv). We first consider case (1). In that case, x is the fixpoint
of ψ̂, so (ii) follows from Lemma 5.2.11. Clearly, by definition of ψ̂, x � ψ(g)⇒ ψ(g) ∼
ψ̂(g). If ψ(g) � x, then by definition of ψ̂ we have ψ̂(g) ∼ x. This proves (iii). If g - x,
(ACH) implies ψ(g) ≥ ψ(x) = 0, and since 0 = max Ψ it follows that ψ(g) = 0, hence (iv).
Now let us consider case (2). By (AC3), we have ψ(g) < c+ ψ(c) = 2c for all g ∈ G,0,
hence ψ̂(g) < 0, hence (ii). Clearly, by definition of ψ̂, x � ψ(g) ⇒ ψ(g) ∼ ψ̂(g). Now
assume ψ(g) - x. By Proposition 5.2.4(1), ψ(g)− c � c, hence ψ̂(g) = ψ(g)− 2c ∼ c ∼ x.
This proves (iii). Now take g, h with g - x and h - x. Since x ∼ c, Proposition 5.2.4(1)
implies ψ(g) ∼ c ∼ x ∼ ψ(h), hence (iv). �

5.3 The differential rank
This section introduces the notion of differential rank, and gives several characterizations
of it in the spirit of the work done in [KMP17] for difference field. We also introduce
the notion of “unfolded” differential rank. In all this section, (K, v,D) will be a pre-
differential-valued field whose field of constants is C and (G,ψ) its asymptotic couple.
We use the same notations as in Section 5.2 for (G,ψ).

5.3.1 Characterization of the differential rank

Applying Section 5.1 to the special case of pre-differential-valued fields, we introduce the
notion of differential rank:

Definition 5.3.1
The differential rank (respectively, the principal differential rank) of the pre-
differential-valued field (K, v,D) is the φ-rank (respectively, the principal φ-rank) of the
valued field (K, v), where φ is the map defined on K,0\Uv by φ(a) = D(a)

a .

Example 5.3.2
Consider the Hardy field K generated by R (all constants functions) and by the maps
x 7→ x, x 7→ log(x) and x 7→ ex. Then the differential rank of K is 1. If we add all the
iterates of the exponential (eex , eee

x

, . . . ), then the differential rank remains 1. Now let
K ′ be the Hardy field generated by T over K, where T is a transexponential function.
We know that such a field exists thanks to [Bos86]. Then K ′ has differential rank 2.

Proposition 5.1.8 then allows us to characterize the differential rank at three different
levels:
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Theorem 5.3.3
Let (K, v,D) be a pre-differential-valued field with asymptotic couple (G,ψ). Then the
differential rank (respectively, the principal differential rank) of (K, v,D) is equal to the
ψ-rank (respectively, the principal ψ-rank) of the ordered abelian group G. Moreover,
if (G,ψ) happens to be H-type, then the differential rank (respectively, the principal
differential rank) of (K, v,D) is also equal to the ω-rank (respectively, the principal
ω-rank) of Γ, where Γ is the value chain of G and ω is the map induced by ψ on Γ.

We now want to express the differential rank as the rank of some quasi-order. This
will give us a differential analog of Theorem 2.3.6. We mentioned in Remark 5.1.11
that applying our Proposition 5.1.10 recovers Theorem 2.3.6, so our idea is to apply
Proposition 5.1.10 to the differential case to obtain similar results. One difficulty here
is that, even assuming that (G,ψ) is H-type, the maps φ, ψ and ω are not increasing
on their domains, so we cannot directly apply Proposition 5.1.10. We still managed to
obtain similar results to those in [KMP17], as Theorem 5.3.5 below shows. The idea is to
remark that, if ψ is H-type and only takes negative values, then we can apply Proposition
5.1.10 to the ordered set (G<0, <). If ψ takes non-negative values, one can use Lemma
5.2.14 which brings back to the case where ψ only takes negative values.

Similarly to what was done in [KMP17], we define the set PK := K\Ov. We now in-
troduce three binary relations -φ,-ψ,-ω respectively defined on PK , G<0 and Γ as follows:

a -φ b⇔ ∃n, k ∈N0, v(φn(a)) ≤ v(φk(b))

g -ψ h⇔ ∃n, k ∈N0, ψ
n(g) ≤ ψk(h)

γ -ω δ ⇔ ∃n, k ∈N0, ω
n(γ) ≤ ωk(δ)

Three important remarks are in order: first, it is not obvious from their definitions
that these relations are quasi-orders, but we will show it in Theorem 5.3.5. Secondly,
note that it can happen that φ(a) < PK when a ∈ PK , which is also a reason why we
cannot apply Proposition 5.1.10 directly (φ was assumed to be a map from A to itself in
Section 5.1). Thirdly, it can happen that the term φn(a) is not well-defined for a certain
n ∈N: indeed, remember that the domain of φ is K,0\Uv. Thus, if v(φ(a)) = 0, φ2(a) is
not well-defined. Therefore, when we write φn(g) it is always implicitly assumed that this
expression is defined, i.e expressions like “φn(g) ≤ φk(h)” should be read as “φn(g), φk(g)
both exist and φn(g) ≤ φk(h) holds”. Note that if we allowed the domain of φ to be K,0

then -φ would not be a quasi-order, and Theorem 5.3.5 would fail. Similar remarks apply
to ψ and ω: G<0 is not necessarily stable under ψ, Γ is not necessarily stable under ω (we
can have ω(γ) =∞), ψ2(g) is not well-defined if ψ(g) = 0 and ω2(γ) is not well-defined
if ω(γ) = ∞. Note however that for any a ∈ Domφ, φn(a) is well-defined if and only
if ψn(v(a)) is, and that we then have v(φn(a)) = ψn(v(a)). Similarly, for any g ∈ G<0,
ψn(g) is well-defined if and only if ωn(vG(g)) is, in which case vG(ψn(g)) = ωn(vG(g))
holds. As a consequence, we have the following lemma:
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Lemma 5.3.4
Assume that (G,ψ) is H-type. For all a, b ∈ PK , a -φ b ⇔ v(a) -ψ v(b). For all
g, h ∈ G<0, g -ψ h⇔ vG(g) -ω vG(h).

Proof. The first statement follows directly from the definitions of -ψ and -φ. Note
however that the image of ψ may contain positive elements, and that vG reverses the
order on G>0, so the second statement is not trivial. Let us now prove the second
statement. Let c be a regular cut point for ψ (which exists thanks to Proposition
5.2.4). Take g, h ∈ G<0 and set γ := vG(g) and δ := vG(h). We first show that
g -ψ h⇒ γ -ω δ. Assume g -ψ h and let n, k ∈ N0 with ψn(g) ≤ ψk(h). If ψk(h) ≤ 0,
then this implies vG(ψn(g)) ≤ vG(ψk(h)), hence ωn(γ) ≤ ωk(δ), hence γ -ω δ. Assume
that 0 < ψk(h). Then by Lemma 5.2.5, ψk+1(h) is a non-zero cut point for ψ. By
Lemma 5.2.3(iii), this implies ψk+1(h) ∼ c. It follows that c , 0 and vG(c) = ωk+1(δ).
If ψn(g) = 0, then in particular n , 0. Moreover, it then follows from Proposition
5.2.4(1) that c � ψn−1(g), hence ωn−1(γ) ≤ vG(c) = ωk+1(δ). If c � ψn(g), then
vG(ψn(g)) ≤ vG(c), hence ωn(γ) ≤ ωk+1(δ). If 0 , ψn(g) - c, then Proposition 5.2.4(1)
implies ψn+1(g) ∼ c, hence ωn+1(γ) = ωk+1(δ). In any case, we have γ -ω δ. This
proves g -ψ h⇒ γ -ω δ, let us now prove the converse. Assume that γ -ω δ holds and
take n, k ∈ N0 with ωn(γ) ≤ ωk(δ). This implies ψk(h) - ψn(g). If c � ψk(h), then by
Lemma 5.2.5 ψn(g) and ψk(h) are both negative. Moreover, it follows from Definition
5.2.2 that ψk+1(h) � ψk(h), so we have ψk+1(h) � ψn(g). Since ψn(g) < 0, this implies
ψn(g) < ψk+1(h), hence g -ψ h. Now assume that ψk(h) - c. If c � g, then ψk(h) � g,
and since g < 0 this implies g < ψk(h), so g -ψ h. Similarly, if ψk(h) ≥ 0, then g < ψk(h),
so g -ψ h. Assume then that ψk(h) < 0 and g - c. By Proposition 5.2.4(1), ψk(h) - c
and g - c imply ψk+1(h) ∼ c ∼ ψ(g). If c = 0, then this implies ψk+1(h) = 0 = ψ(g),
hence g -ψ h. If c , 0, then because (G,ψ) is H-type, the relations ψk+1(h) ∼ c ∼ ψ(g)
imply ψk+2(h) = ψ(c) = ψ2(g), hence g -ψ h. In any case, we have g -ψ h. �

Theorem 5.3.5
Then the differential rank (respectively, the principal differential rank) of (K, v,D) is
equal to the rank (respectively the principal rank) of each one of these q.o. sets:

(1) The q.o. set (PK ,-φ).

(2) The q.o. set (G<0,-ψ).

(3) The q.o. set (Γ,-ω).

Proof. Assume that (3) has been proved. In particular, -ω is a q.o. By Lemma 5.3.4,
it follows that -ψ is a q.o on G<0. Consider the map: S 7→ vG(S) from the set of final
segments of (G<0,-ψ) to the power set of Γ. It follows from Lemma 5.3.4 that this map
gives a bijection between final segments of (G<0,-ψ) and final segments of (Γ,-ω), which
means that (G<0,-ψ) and (Γ,-ω) have the same rank. Moreover, one easily sees that
if S ⊆ G<0 is the principal final segment of (G<0,-ψ) generated by g, then vG(S) is
the principal final segment of (Γ,-ω) generated by vG(g) and that this gives a bijection
between the principal rank of (G<0,-ψ) and the principal rank of (Γ,-ω). This shows
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that (3) implies (2), and using Lemma 5.3.4 again one can do a similar proof that (2)
implies (1). Therefore, it is sufficient to prove (3).

Now let us show (3). By Theorem 5.3.3, the (principal) differential rank of (K, v,D)
is equal to the (principal) ω-rank of (Γ,≤). Therefore, we just have to show that -ω is a
q.o. and that the (principal) rank of (Γ,-ω) is equal to the (principal) ω-rank of (Γ,≤).
We first assume that we have Ψ < 0. In that case, we have ∞ < ω(Γ). Moreover, ω is
increasing: indeed, if vG(g), vG(h) ∈ Γ are such that vG(g) ≤ vG(h), then since (G,ψ)
is H-type we have ψ(g) ≤ ψ(h), and since ψ(h) < 0 this implies vG(ψ(g)) ≤ vG(ψ(h)),
hence ω(vG(g)) ≤ ω(vG(h)). Therefore, we can apply Proposition 5.1.10 with A := Γ and
φ := ω, which states that the (principal) ω-rank of Γ is equal to the (principal) rank of
the q.o. set (Γ,-ω), so (3) holds. Now assume that the condition Ψ < 0 is not satisfied.
Let x, α, ψ̂, ω̂ be as in Lemma 5.2.14. We know from Lemma 5.2.14 that Ψ̂ < 0, so we
know by what we just proved that the (principal) ω̂-rank of Γ is equal to the (principal)
rank of the q.o. set (Γ,-ω̂). We also know by Lemma 5.2.14 that the (principal) ψ̂-rank
of the group (G,≤) is equal to the (principal) ψ-rank of the group (G,≤). By Theorem
5.3.3, this implies that the (principal) ω̂-rank of (Γ,≤) is equal to the (principal) ω-rank
of (Γ,≤). Therefore, the (principal) ω-rank of (Γ,≤) is equal to the (principal) rank of
(Γ,-ω̂). All that remains to show is that -ω̂ and -ω define the same relation on Γ. We
use the following claim which follows directly from Lemma 5.2.14(iii) and (iv):

Claim: Let γ ∈ Γ and n ∈N0. If ω̂n(γ) < α or ωn(γ) < α, then ωl(γ) = ω̂l(γ) < α for
every l ≤ n. If ωn(γ) ≥ α, then ω̂l(γ) = α for all l ≥ n.

Now let us show that γ -ω δ ⇔ γ -ω̂ δ. Assume γ -ω δ and take n, k ∈ N0 with
ωn(γ) ≤ ωk(δ). If ωk(δ) < α, then also ωn(γ) < α and it follows from the claim that
ω̂n(γ) = ωn(γ) ≤ ωk(δ) = ω̂k(δ). Assume α ≤ ωk(δ). It then follows from the claim
that α = ω̂k(δ). Since α = max(ω̂(Γ)), we have ω̂(γ) ≤ α, hence ω̂(γ) ≤ ω̂k(δ). This
proves γ -ω̂ δ. Conversely, assume that γ -ω̂ δ holds, ω̂n(γ) ≤ ω̂k(δ). Assume first
that ω̂k(δ) = α. Then by the claim, there must be l ≤ k with α ≤ ωl(δ). If γ ≤ α or
ωl(δ) = ∞, then clearly γ < ωl(δ). If α ≤ γ and ωl(δ) , ∞, then Lemma 5.2.14(iv)
implies ω(γ) = ωl+1(δ). Now assume ω̂k(δ) < α. Then also ω̂n(γ) < α, and it follows
from the claim that ωn(γ) = ω̂n(γ) ≤ ω̂k(δ) = ωk(δ). This proves γ -ω δ and concludes
the proof of the Theorem. �

In the case of valued difference fields, Theorem 2.3.4 above gives several characteriza-
tions of the compatibility of σ with v. We now want to explore the possibility of a similar
characterization for differential-valued fields. We say that D induces a derivation D̄
on Kw if D(Ow) ⊆ Ow and D(Mw) ⊆Mw for all a, b ∈ Ow. The derivation D̄ is then
defined by D̄(a+Mw) := D(a) +Mw (the fact that D̄ is a derivation follows directly
from its definition).

We want to characterize the coarsenings w of v such that D induces a derivation
on Kw. The notion of cut point developed above for asymptotic couples plays here an
important role, so we extend this notion to fields: If (K, v,D) is a pre-differential-valued
field with asymptotic couple (G,ψ), we say that y ∈ K is a cut point (respectively, a
regular cut point) for (K, v,D) if v(y) is a cut point (respectively, a regular cut point)
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for (G,ψ). Such an element always exists thanks to Proposition 5.2.4. We recall that v
w

denotes the valuation induced by v on Kw (see Section 2.3).

Proposition 5.3.6
Let (K, v,D) be a pre-differential-valued field, y a regular cut point for K and w a strict
coarsening of v. The following holds:

(1) If y < Ow, then D(Ow) * Ow, so D does not induce a map on Kw.

(2) If y ∈Mw, and if D induces a derivation on Kw, then D induces the constant map
0 on Kw.

(3) If y ∈ Uw, then D induces a non-trivial derivation on Kw making (Kw, vw , D̄) a
pre-differential-valued field. Moreover, if (K, v,D) is a differential-valued field , then
(Kw, vw , D̄) is also a differential-valued field.

Proof. Remember that, for any a ∈ K with v(a) , 0, v(D(a)) = DG(v(a)). Set
Gw := v(Uw) and c := v(y). Let us prove (1). Take a ∈ Uw\Uv, so v(a) ∈ Gw\{0}.
By assumption, we have c < Gw, hence v(a) � c. By Proposition 5.2.4(2), this implies
DG(v(a)) � c. It follows thatDG(v(a)) < Gw, henceD(a) < Ow. Now let us prove (2). By
assumption, we haveGw < c. Take a ∈ Uw, and let us show thatD(a) ∈Mw. Assume first
that a ∈ Ov. Then (DV2) impliesDG(v(a)) > ψ(c). By Lemma 5.2.3(ii), we have ψ(c) � c,
hence Gw < ψ(c). It follows that Gw < DG(v(a)), hence D(a) ∈ Mw. Now assume
a ∈ Uw\Ov, so in particular v(a) , 0. Since a ∈ Uw, we have v(a) ∈ Gw. By convexity,
v(a) � c. Proposition 5.2.4(2) then implies DG(v(a)) � c, hence Gw < DG(v(a)). This
implies D(a) ∈ Mw. Now let us prove (3). By assumption, we have c ∈ Gw. Let
a ∈ Ow and let us show that D(a) ∈ Ow. Assume first that a ∈ Ov. If c = 0, then by
Lemma 5.2.9(i) we have 0 = sup Ψ. It then follows from (DV2) that 0 ≤ v(D(a)),which
implies D(a) ∈ Ow. If c , 0, then (DV2) implies v(D(a)) > ψ(c). By Lemma 5.2.3(ii),
ψ(c) � c, hence ψ(c) ∈ Gw by convexity of Gw. It follows that either v(D(a)) ∈ Gw
or Gw < v(D(a)) holds, which implies D(a) ∈ Ow. Now assume a ∈ Ow\Ov and set
g := v(a). Note that g , 0. By Proposition 5.2.4, we either have DG(g) � g or DG(g) - c.
Since c ∈ Gw and g ∈ Gw, it follows from the convexity of Gw that DG(g) ∈ Gw, hence
D(a) ∈ Uw. Now assume a ∈Mw and let us show D(a) ∈Mw. We have so Gw < g. By
convexity of Gw, we then have c � g, which by Proposition 5.2.4(4) implies DG(g) � g,
hence Gw < DG(g) hence D(a) ∈Mw. This shows that D induces a derivation on Kw.
Note that we showed that D(Ow\Ov) ⊆ Uw, which proves that D̄ is non-trivial. The fact
that D̄ is a derivation satisfying (DV2) follows directly from the definition of D and v

w ,
so (Kw, vw , D̄) is a pre-differential-valued field. Moreover, the condition Ov = C +Mv

clearly implies O v
w

= C v
w

+M v
w
, where C v

w
= {c+Mw | c ∈ C}. �

In case we start with a pre-H-field, then the induced derivation in Proposition 5.3.6(3)
will also be a pre-H-field:

Proposition 5.3.7
Let (K, v,≤, D) be a pre-H-field and y ∈ K a regular cut point. If w is a coarsening of v
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with y ∈ Uw, then (Kw, vw ,≤w, D̄) is a pre-H-field. If (K,≤, D) is a H-field, then so is
(Kw,≤w, D̄).

Proof. We know from Proposition 5.3.6(3) that (Kw, vw , D̄) is a pre-differential-valued
field. It follows from the definitions of v

w and ≤w that axioms (PH2),(PH3) and (H2) are
preserved when going to the residue field Kw, hence the claim. �

Proposition 5.3.6 kills our hope of establishing an exact analog of Theorem 2.3.4.
Indeed, there can be coarsenings w of v which are not compatible with φ but still contain
y, so that D will induce a derivation on Kw. Consider the following example:

Example 5.3.8
Let K be the Hardy field generated by all constant real functions and the maps x 7→ x,
x 7→ ex and x 7→ ee

x . Note that a regular cut point of K is the function x 7→ 1
x . Now

let Ow be the convex hull of R(ex) (i.e. w is the principal coarsening of v generated
by x 7→ ex). We have 1

x ∈ Ow, so by Proposition 5.3.6 D induces a derivation on Kw.
However, w is not φ-compatible, because eex < Ow but φ(eex) = ex ∈ Ow.

Another idea to characterize the differential rank is look at the valued field (K,w),
where w is a coarsening of v. One can then wonder if (K,w,D) is still a pre-differential-
valued field. The following proposition gives us an answer:

Proposition 5.3.9
Let (K, v,D) be a pre-differential-valued field (respectively, a pre-H-field), y a regular
cut point for (K, v,D) and w a strict coarsening of v such that y ∈ Uw. Then Ow is in
the differential rank of (K, v,D) if and only if (K,w,D) is a pre-differential-valued field
(respectively, a pre-H-field).

Proof. Set c := v(y). We want to show that (K,w,D) satisfies (DV2) if and only if w is
compatible with φ. Let a ∈ Ow and b ∈ Mw, b , 0. Since b ∈ Mw, we have D(b) , 0,
so w(φ(b)) ,∞. If D(a) = 0 then obviously w(D(a)) > w(φ(b)). If D(a) , 0, then the
inequality w(D(a)) > w(φ(b)) is equivalent to D(a)

φ(b) ∈Mw. Therefore, (K,w,D) satisfies
(DV2) if and only if for all a ∈ Ow with D(a) , 0 and all b ∈Mw, D(a)

φ(b) ∈Mw. Assume w
is not φ-compatible. Since y ∈ Uw, it follows from Proposition 5.2.4(1) and (4) that for all
b ∈ K, b ∈ Uw ⇒ φ(b) ∈ Uw. Therefore, there must exist b < Uw with φ(b) ∈ Uw, without
loss of generality b ∈Mw (otherwise, take b−1). Take an a ∈ Uw\Uv, so v(a) ∈ G,0

w . By
Proposition 5.2.4(2), (3) and (4), either DG(v(a)) ∼ v(a) or DG(v(a)) - c is true. By
assumption, we have c ∈ Gw and v(a) ∈ Gw. It follows from the the convexity of Gw that
DG(v(a)) ∈ Gw, hence D(a) ∈ Uw. We thus have D(a), 1

φ(b) ∈ Ow\Mw, and sinceMw

is a prime ideal of Ow this implies D(a)
φ(b) <Mw, which contradicts (DV2) for w. Assume

now that w is φ-compatible. Take a ∈ Ow with D(a) , 0 and b ∈Mw. By Proposition
5.3.6(3), we know that D(a) ∈ Ow. Since v(b) < Gw and since Gw is ψ-compatible, we
know by Proposition 5.2.7 that ψ(v(b)) < Gw, hence φ(b) < Ow, so 1

φ(b) ∈ Mw, hence
D(a)
φ(b) ∈ Mw. This proves (DV2). Now assume that (K, v,≤, D) is a pre-H-field. Since
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Ov is ≤-convex and w is a coarsening of v, Ow is also ≤-convex, so (K,w,≤, D) satisfies
(PH2). Since Ov ⊆ Ow, it also satisfies (PH3). �

Remark 5.3.10: If w , v, (K,w,D) cannot satisfy (DV1), so it is not a differential-
valued field.

Finally, Proposition 5.3.6 and 5.3.9 allow us to give a full characterization of coarsen-
ings w of v which belong to the differential rank of (K, v,D) by looking simultaneously
at the valued field (K,w) and at the residue field Kw:

Theorem 5.3.11
Let (K, v,D) be a pre-differential-valued field (respectively, a pre-H-field) and w a strict
coarsening of v. Then Ow is in the differential rank of (K, v,D) if and only if the two
following conditions are satisfied:

(1) D induces a non-trivial derivation on Kw.

(2) (K,w,D) is a pre-differential-valued field (respectively, a pre-H-field).

Proof. Take a regular cut point y for (K, v,D) and set c := v(y). If w is φ-compatible,
then by Proposition 5.2.7 we must have c ∈ Gw hence y ∈ Uw, which by Proposition 5.3.6
implies that D induces a non-trivial derivation on Kw. We can then apply Proposition
5.3.9 and we get that (K,w,D) is a pre-differential-valued field (respectively, a pre-H-
field). Conversely, assume (1) and (2) hold. By Proposition 5.3.6, (1) implies y ∈ Uw, so
we can apply 5.3.9 and we get that, since (2) holds, Ow must be in the differential rank
of (K, v,D). �

5.3.2 The unfolded differential rank

Our definition of the differential rank is not quite satisfactory if the cut point for ψ
is not 0. Indeed, by Proposition 5.2.7, we see that the ψ-rank of G does not give any
information on what happens for “small” elements, i.e elements g with 0 - g - c where c
is a cut point for ψ. Consider the following example:

Example 5.3.12
Let K, T and K ′ be as in Example 5.3.2, and let L be the compositional inverse of T . L
is a function that grows to infinity more slowly than any iterate of log. However, adding
L to K or K ′ has no effect on the differential rank. This is because v(L) - c, where
c = v( 1

x) is a cut point for ψ.

We need to “unfold” the map ψ around 0 to get the information on “small” elements,
i.e we need to translate ψ in order to obtain a new map whose cut point is closer to 0 than
c is, thus gaining information on the behavior of ψ around 0. Ideally, this translate of ψ
should have 0 as a cut point. If ψ happens to have a gap or a maximum g, then we can do
this by considering the map ψ′ := ψ − g, since this map has 0 as the cut point. However,
things are more complicated in general; in particular if (G,ψ) has asymptotic integration,
then we cannot obtain a map with cut point 0 by simply translating ψ. Instead, we need

140



Lehéricy Gabriel - Thèse de doctorat - 2018

to consider an infinite family of translates of ψ whose cut points approach 0, and then
take the union of their ranks.

Now let us denote by R the set of non-trivial ψ-compatible convex subgroups of G
and by P the set of non-trivial ψ-principal convex subgroups of G. For any g ∈ G,0,
let us denote by ψg the map G,0 → G, h 7→ ψ(h)− ψ(g). Note that (G,ψg) is also an
asymptotic couple. For every g we choose a cut point cg for ψg. We denote by Sg set of
non-trivial ψg-compatible convex subgroups of G and by Qg set of non-trivial ψg-principal
convex subgroups of G.

Lemma 5.3.13
Let h ∈ G,0. For any cut point ch for ψh, we have ch - h.

Proof. If ch = 0 this is clear, so assume ch , 0. By Lemma 5.2.3(ii), we have ch ∼ ψh(ch).
By Lemma 5.2.1, we have ψh(ch) = ψ(ch)− ψ(h) � ch − h. It follows that ch � ch − h,
which implies ch - h. �

Lemma 5.3.13 shows in particular that we can choose g so that cg is arbitrarily small,
which means that the family {ψg}g∈G is well-suited for our purpose. This motivates the
following definition:

Definition 5.3.14
The unfolded ψ-rank of the asymptotic couple (G,ψ) is the order-type of the totally
ordered set S := ⋃

0,g∈G Sg. The principal unfolded ψ-rank of the asymptotic couple
(G,ψ) is the order-type of the totally ordered set Q := ⋃

0,g∈GQg. If (K, v,D) is a
pre-differential-valued field, we define its unfolded differential rank ( respectively, its
principal unfolded differential rank) as the unfolded ψ-rank of G (respectively the
principal unfolded ψ-rank of G), where (G,ψ) is the asymptotic couple associated to
(K, v,D).

In order to justify Definition 5.3.14, we still need to check that S and P satisfy
the conditions that we want. We want to show that S contains the ψ-rank of G, and
that the only new subgroups that were added in the process are subgroups contained in
{g ∈ G | g - c}, where c is a cut point for ψ.

Lemma 5.3.15
Let g ∈ G,0. The following holds:

(i) We have Sg = {H ∈ S | g ∈ H}. In particular, Sg is a final segment of S.

(ii) For any convex subgroup H of G, H ∈ Q if and only if there is h ∈ G such that
H = ⋂

F∈Sh
F .

(iii) We have Qg = {H ∈ Q | g ∈ H}. In particular, Qg is a final segment of Q.

Proof. Let us prove (i). If H ∈ Sg, then obviously H ∈ S. Moreover, we have ψg(g) =
0 ∈ H, so if H ∈ Sg it follows from ψg-compatibility that g ∈ H. This proves Sg ⊆ {H ∈
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S | g ∈ H}. Now assume that g ∈ H ∈ S holds. By definition of S, there is h ∈ G
such that H ∈ Sh. Let us show that H ∈ Sg. Let f ∈ G,0. We already showed that
H ∈ Sh implies h ∈ H. By definition of Sh, we have f ∈ H ⇔ ψh(f) ∈ H. Moreover,
we have ψh(f) = ψg(f) + ψ(g)− ψ(h). By Lemma 5.2.1, we have ψ(g)− ψ(h) � g − h.
Since g, h ∈ H, it follows from convexity of H that ψ(g) − ψ(h) ∈ H. It follows that
ψg(f) ∈ H if and only if ψh(f) ∈ H. It follows that f ∈ H ⇔ ψg(f) ∈ H. This
shows H ∈ Sg. Let us show (ii). By definition of Q, H ∈ Q if and only if there exists
h, f ∈ G such that H = ⋂

f∈F∈Sh
F . Now note that, for any F ∈ S, it follows from (i)

that f ∈ F ∈ Sh ⇔ f, h ∈ F ∈ S ⇔ h ∈ F ∈ Sf , so H = ⋂
f∈F∈Sh

F if and only if

H = ⋂
h∈F∈Sf

F . Therefore, we can assume without loss of generality that f - h. It

follows from (i) that f ∈ F ∈ Sh ⇒ h ∈ F ∈ Sh, and since f - h it follows from
convexity that h ∈ F ∈ Sh ⇒ f ∈ F ∈ Sh. It follows that H = ⋂

f∈F∈Sh
F holds

if and only if H = ⋂
h∈F∈Sh

F . By (i), we have ⋂
h∈F∈Sh

F = ⋂
F∈Sh

F . This shows (ii).

Now let us show (iii). Assume H ∈ Qg. Then in particular, H ∈ Sg, hence g ∈ H
by (i). Conversely, assume g ∈ H ∈ Q. By (ii), there is h such that H = ⋂

F∈Sh
F .

Because g ∈ H, we have H = ⋂
g∈F∈Sh

F . It follows from (i) that, for any F ∈ S,

g ∈ F ∈ Sh ⇔ g, h ∈ F ∈ S ⇔ h ∈ F ∈ Sg. It follows that H = ⋂
h∈F∈Sg

F . This means

that H is the smallest element of Sg with h ∈ H, hence H ∈ Qg.
�

The principal unfolded differential rank is related to the unfolded differential rank
the same way that principal ranks are usually related to the corresponding rank:

Proposition 5.3.16
If H is a convex subgroup of G, then H ∈ Q if and only if there exists h ∈ G such that
H is the smallest element of S containing h.

Proof. Let H ∈ Q. It follows from Lemma 5.3.15(ii) that H = ⋂
F∈Sg

F for some g ∈ G.

It then follows from Lemma 5.3.15(i) that H = ⋂
g∈F∈S

F , i.e H is the smallest element

of S containing g. Conversely, assume that H is the smallest element of S containing g.
It follows from Lemma 5.3.15(i) that H is then the smallest element of Sg containing g,
hence H ∈ Qg ⊆ Q.

�

Now we can describe the connection between the (principal) ψ-rank and the (principal)
unfolded ψ-rank:

Proposition 5.3.17
Let c be a cut point for ψ. The following holds:
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(1) We have R = {H ∈ S | c ∈ H}. In particular, R is a final segment of S.

(2) We have P = {H ∈ Q | c ∈ H}. In particular, P is a final segment of Q.

(3) Assume c , 0 and let Gc be the ψ-principal subgroup of G generated by c. Then R
(respectively, P ) is the principal final segment of S (respectively, of Q) generated by
Gc.

(4) Assume c = 0. Then R = S and P = Q.

(5) Assume g is either the maximum of Ψ or a gap for ψ. Then S (respectively, Q) is
equal to the ψ′-rank of G (respectively, the principal ψ′-rank of G), where ψ′ := ψ−g.

Proof. Let us prove (1). It follows from Proposition 5.2.7 that H ∈ R ⇒ c ∈ H. Now
we just have to show that, for any non-trivial convex subgroup H of G containing c,
H ∈ R ⇔ H ∈ S. Let H be a convex subgroup of G containing c. Take g ∈ H,0.
It follows from Lemma 5.3.15(i) that H ∈ S if and only if H ∈ Sg. By Lemma 5.2.6,
we have ψ(g) ∈ H. For any f ∈ G,0, we have ψg(f) = ψ(f) − ψ(g), which implies
ψg(f) ∈ H ⇔ ψ(f) ∈ H. It then follows from the definition of R and Sg that H ∈ R
if and only if H ∈ Sg. This shows that H ∈ R if and only if H ∈ S. Now let us show
(2). Assume H ∈ P . Then there exists g ∈ G such that H is the smallest element of R
containing g. It follows from (1) that H is the smallest element of S containing c and g.
It then follows from convexity that H is the smallest element of S containing h, where
we set h := c if g - c and h := g is c � g. By Proposition 5.3.16, this implies H ∈ Q.
Conversely, assume c ∈ H ∈ Q. Then by Proposition 5.3.16, there is g ∈ H such that H
is the smallest element of S containing g. Since c ∈ H, it follows from (1) that H is the
smallest element of R containing g, hence H ∈ P . This shows (2). (3) and (4) then follow
directly from (1) and (2). Let us prove (5). Note that ψg(h) = ψ′(h)− ψ′(g) = ψ′g(h) for
any g, h. It follows that the (principal) unfolded ψ-rank of G is equal to the (principal)
unfolded ψ′-rank of G. By lemma 5.2.10, 0 is a cut point for ψ′. It then follows from (4)
that the (principal) unfolded ψ-rank of G is equal to the (principal) ψ′-rank of G.

�

Remark 5.3.18: Proposition 5.3.17 shows that the unfolded differential rank has the
desired properties. Indeed, (1) and (2) show that the (principal) differential rank is
contained in the (principal) unfolded differential rank and that the only subgroups which
were added in the process are groups which do not contain c. Moreover, (5) shows that
taking the unfolded differential rank generalizes the idea of translating ψ by a gap.

For a pre-differential-valued field (K, v,D) with asymptotic couple (G,ψ), we say that
a coarsening w of v lies in the unfolded differential rank of (K, v,D) if Gw lies in unfolded
ψ-rank of G. We can give an analog of Theorem 5.3.11 for the unfolded differential rank,
which characterizes the convex subrings of K lying in the unfolded differential rank:

Theorem 5.3.19
Let (K, v,D) be a pre-differential-valued field and w a coarsening of v. Then w is in the
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unfolded differential rank of (K, v,D) if and only if (K,w,D) is a pre-differential-valued
field.

Proof. Assume w is in the unfolded differential rank of (K, v,D). This means that there
is g ∈ G,0 such that Gw is in the ψg-rank of G. Now take a ∈ K with v(a) = ψ(g).
(K, v, aD) is a pre-differential-valued field with asymptotic couple (G,ψg) and Ow is in
the differential rank of (K, v, aD). By Theorem 5.3.11, it follows that (K,w, aD) is a
pre-differential valued field, so (K,w,D) is also a pre-differential-valued field. Conversely,
assume (K,w,D) is a pre-differential-valued field, w , v, and take a ∈ Uw\Ov. Set
g := v(a). By Lemma 5.3.13, we have cg - g, so by convexity cg ∈ Gw. By Proposition
5.3.6(3) and Theorem 5.3.11, it follows that Ow is in the differential rank of (K, v, aD),
so Gw is in the ψg-rank of G, so it is in the unfolded ψ-rank of G. �

Finally, we want to connect the unfolded differential rank with the exponential rank
of exponential ordered fields. The connection will be given by the following proposition:

Proposition 5.3.20
Assume there exists a map χ : G,0 → G,0 such that for any g ∈ G<0, χ(g) + ψ(χ(g)) =
ψ(g) and χ(−g) = −χ(g). Then the unfolded ψ-rank (respectively, the principal unfolded
ψ-rank) of G coincides with the χ-rank (respectively, the principal χ-rank) of G.

Proof. We start by showing the following claim:

Claim: For any g, h ∈ G,0, if g - χ(h) then ψg(h) ∼ χ(h).

Proof. Because χ(−h) = −χ(h) and ψg(h) = ψg(−h), it is sufficient to consider the
case h < 0. By assumption, we have χ(h) + ψ(χ(h)) = ψ(h) for any h < 0, hence
χ(h) = ψ(h)− ψ(χ(h)) = ψg(h) + ψ(g)− ψ(χ(h)) hence χ(h)− ψg(h) = ψ(g)− ψ(χ(h)).
By Lemma 5.2.1, we have ψ(g)−ψ(χ(h)) � g−χ(h), so if g - χ(h) we have χ(h)−ψg(h) =
ψ(g)− ψ(χ(h)) � χ(h) which implies χ(h) ∼ ψg(h). �

Now let us prove the proposition. Let H be a convex subgroup of G. Assume H
is χ-compatible and take g ∈ H, g , 0. By Lemma 5.3.13, cg - g, hence cg ∈ H by
convexity. Now take h ∈ G such that ψg(h) ∈ H. If χ(h) - g, then by convexity χ(h) ∈ H.
If g - χ(h), then the claim implies χ(h) ∼ ψg(h), hence by convexity χ(h) ∈ H. In any
case we have χ(h) ∈ H, and since H is χ-compatible it follows that h ∈ H. We proved
cg ∈ H and ψg(h) ∈ H ⇒ h ∈ H, so by Proposition 5.2.7 H is ψg-compatible, which
means that H is in the unfolded ψ-rank of G. Conversely, assume H ∈ S and take h ∈ G.
Since H ∈ S, there is g ∈ G with H ∈ Sg. By Lemma 5.3.15(i), we have g ∈ H. If
χ(h) � g, then it follows from convexity of H that χ(h) ∈ H, which by Lemma 5.3.15(i)
implies H ∈ Sχ(h). Therefore, we can always assume that g - χ(h). By the claim, we
then have ψg(h) ∈ H ⇔ χ(h) ∈ H. Since H ∈ Sg, this implies h ∈ H ⇔ χ(h) ∈ H, so H
is χ-compatible. This proves that the unfolded ψ-rank of G is equal to the χ-rank of G.
It then immediately follows from Proposition 5.3.16 that the principal unfolded ψ-rank
is equal to the principal χ-rank. �
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Remark 5.3.21: In [Asc03], the author explained how to obtain such a map χ as in
Proposition 5.3.20. Assume that (G,ψ) has asymptotic integration; then we can define∫
g := D−1

G (g) for any g ∈ G (note that DG is injective because it is strictly increasing).
We can then define the map: χ(g) : G<0 → G, g 7→

∫
ψ(g). We extend this map to G by

setting χ(0) := 0 and χ(g) = −χ(−g) for every g > 0. The map χ satisfies the conditions
of Proposition 5.3.20. Moreover, χ is a precontraction (see [Asc03, Section 5]).

Proposition 5.3.20 yields an immediate corollary for exponential fields. We refer to
[Kuh00] for the definition of v-compatible (GA), (T1)-exponential:

Corollary 5.3.22
Let (K,≤, D) be a H-field, let v be the natural valuation associated to ≤ and assume that
there exists a v-compatible (GA), (T1)-exponential exp on K such that φ(exp(a)) = D(a)
for any a ∈ K. Then the exponential rank of (K,≤, exp) is equal to the unfolded
differential rank of (K,≤, D).

Proof. We know from [Kuh00] that log = exp−1 induces a map χ on G and that the
exponential rank of K is equal to the χ-rank of G (note that this also follows from
our Proposition 5.1.8). With our assumption, it is easy to check that χ satisfies the
assumptions of Proposition 5.3.20. The claim then follows from Proposition 5.3.20. �

5.4 Derivations on power series
The goal of this Section is to answer the following question:

Question 1: Given an ordered abelian group G and a field k of characteristic 0, under
which conditions on k and G can we define a strongly linear derivation on the field k((G))
of generalized power series so that k((G)) is a differential-valued field? a H-field?

We do this by first answering the following question:

Question 2: Let a H-type asymptotic couple (G,ψ) and a field k of characteristic 0 be
given. Under which condition on (G,ψ) and k can we define a strongly linear derivation
D on K := k((G)) such that (K, v,D) is a differential-valued field (or a H-field) whose
associated asymptotic couple is (G,ψ)?

We then apply our results to construct a derivation on a field of generalized power
series so that we obtain a H-field of given principal differential rank and principal unfolded
differential rank. All the asymptotic couples appearing in this section are H-type. Section
5.4.1 answers Question 2 and Section 5.4.2 answers a variant of Question 1 where D is
required to be a H-derivation. Section 5.4.3 answers another variant of Question 1 where
we require D to be of Hardy type, which is connected to the work done in [KM12] and
[KM11].

Throughout this section, k will denote a field, G an ordered abelian group and
K := k((G)) the field of generalized power series with exponents in G and coefficients
in k. We denote by v the usual valuation on K, i.e. v(∑

g∈G agt
g) = min supp((ag)g∈G).
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If k is ordered, then we also consider K as an ordered field in the usual sense, i.e K is
endowed with the order defined in Section 2.5. We will always denote by (Γ, (Bγ)γ∈Γ)
the skeleton of the valued group (G, vG), where vG is the archimedean valuation on G.

5.4.1 Defining a derivation of given asymptotic couple

Let (G,ψ) be a H-type asymptotic couple. In this section, we want to define a strongly
linear derivation D on K := k((G)) such that (K, v,D) is a differential-valued field
whose associated asymptotic couple is (G,ψ). If k happens to be ordered, then we want
(K,≤, D) to be a H-field.

Proposition 5.4.1
Assume D is a strongly linear derivation on K such that, for every a ∈ K with a , 0 and
v(a) , 0, v(D(a)) = v(a) + ψ(v(a)) . The following holds:

(1) (K, v,D) is a differential-valued field with asymptotic couple (G,ψ).

(2) Assume k is ordered. Assume also that for every a < Ov, the leading coefficient of
a has the same sign as the leading coefficient of D(a). Then (K,≤, D) is a H-field
with asymptotic couple (G,ψ).

Proof. Let us show (1). We first show that C = k.t0. We have D(t0) = 0 and it follows
from strong linearity that D(a.t0) = 0 for all a ∈ k. This proves k.t0 ⊆ C. Now let
a ∈ C, a , 0. If v(a) , 0, then it follows from the assumption on D that D(a) , 0.
Therefore, we must have v(a) = 0. Write a = a0t

0 + b with v(b) > 0. By linearity,
D(a) = D(b). Since v(b) , 0, b , 0 would imply D(b) , 0, which is a contradiction.
Therefore, we have b = 0, i.e. a = a0t

0. This shows C = k.t0. Moreover, we have
Ov = k((G≥0)). We thus have Ov = k.t0

⊕
k((G>0)) = C⊕

Mv, which shows (DV1).
Now let a ∈ Ov and b ∈ Mv with b , 0. We then have D(b) , 0. If D(a) = 0
then clearly v(D(a)) > v(D(b)

b ). Assume D(a) , 0. Then by assumption, we have
v(D(a)) = v(a) +ψ(v(a)) and v(D(b)

b ) = ψ(v(b)). Because v(a) > 0, axiom (AC3) implies
ψ(v(b)) < v(a) + ψ(v(a)), hence v(D(b)

b ) < v(D(a)). This proves that (K, v,D) is a
differential-valued field. The fact that (G,ψ) is the asymptotic couple associated to
(K, v,D) clearly follows from the assumption. Now let us prove (2). Clearly, Ov is the
convex hull of C. Let a ∈ K with C < a. This means that a < Ov and that the leading
coefficient of a is positive. It then follows from the assumption that D(a) > 0, which
proves that (K,≤, D) is a H-field. �

We now aim at defining a derivation satisfying the conditions of Proposition 5.4.1.
The key idea to our approach is to note that ψ is a valuation on G. Indeed, we can
extend ψ to G by declaring ψ(0) :=∞. It then follows from (AC1) and (AC2) that ψ
is a Z-module valuation on G. It follows from (ACH) that ψ is compatible with ≤ (in
the sense of Definition 2.7.17). We denote by (Ψ, (Cλ)λ∈Ψ) the skeleton of (G,ψ). For
any λ ∈ Ψ, we denote by Ĉλ the divisible hull of Cλ. It follows from Corollary 3.2.3 that
for each λ ∈ Ψ, ≤ induces an order on Cλ. This order can be extended to an order on
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Ĉλ in a unique way. Now denote by (H,≤H) the lexicographic product of the family of
ordered groups (Ĉλ,≤λ)λ∈Ψ. We will denote elements of H as formal sums g = ∑

λ∈Ψ gλ,
where gλ ∈ Ĉλ. We view each Ĉλ as a subgroup of H. We can state a variant of Hahn’s
embedding theorem for asymptotic couples:

Theorem 5.4.2 (Hahn’s embedding for asymptotic couples)
There exists a map ψH : H\{0} → H such that the following holds:

(1) (H,ψH) is a H-type asymptotic couple.

(2) There is an embedding of asymptotic couples: ι : (G,≤, ψ) ↪→ (H,≤H , ψH).

Proof. Denote by w the valuation of H defined by w(h) = min supp(h). Note that
w(H,0) = Ψ ⊆ G. Let ι : (G,ψ) ↪→ (H,w) be an embedding of valued groups as in
Theorem 2.2.9. By Proposition 3.2.6, we know that ι is an embedding of ordered groups.
Now define ψH as follows: for h = ∑

λ∈Ψ hλ ∈ H, set ψH(h) := ι(w(h)). By condition
(1) of Theorem 2.2.9, we have ψ(g) = w(ι(g)) for all g ∈ G,0. Therefore, we have the
following commutative diagram:

G,0 H,0

Ψ ι(Ψ)

ι

ψ ψHw

ι

(D)

All we have to show now is that (H,ψH) is a H-type asymptotic couple. Let g, h ∈
H\{0} and n ∈ Z\{0}. Because w is a Z-module valuation, we have w(ng) = w(g), hence
ψH(ng) = ι(w(g)) = ψH(g). This proves (AC2). We also have w(g+h) ≥ min(w(g), w(h)).
Since ι preserves the order, it follows that min(ψH(g), ψH(h)) ≤H ψH(g + h), hence
(AC1). Assume that g ≤H h <H 0. Because w is compatible with ≤H , we then have
w(g) ≤ w(h), hence (since ι preserves the order) ψH(g) ≤H ψH(h). This proves (ACH).
Now we just have to prove that ψH satisfies (AC3). We will use the following claim:

Claim: Let h ∈ H>0 and µ := w(h). There exists g ∈ G>0 with ι(g) ≤ h and ψ(g) = µ.

Proof. Take any g ∈ G>0 with ψ(g) = µ (such a g exists because µ ∈ Ψ). We write
h = ∑

λ∈Ψ hλ and ι(g) = ∑
λ∈Ψ gλ. Set ν := w(ι(g)− h). We distinguish two cases:

Case 1: ν > µ. Choose f ∈ Gν with 0 , f + Gν < hν − gν . Set g′ := g + f and write
ι(f) = ∑

λ∈Ψ fλ. Because µ = ψ(g) < ν = ψ(f), we have ψ(g′) = µ and g′ > 0.
By condition (1) of Theorem 2.2.9, w(ι(f)) = ψ(f) = ν, hence fλ = 0 for all
λ < ν. By condition (2) of Theorem 2.2.9, we have fν = f + Gν . We have:
ι(g′)− h = ∑

λ(gλ + fλ − hλ). By definition of ν, we have gλ + fλ − hλ = 0 for all
λ < ν. Moreover, by choice of f , we have fν + gν − hν < 0. It then follows from
the definition of ≤H that ι(g′)− h < 0, hence ι(g′) < h.
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Case 2: ν = µ. Take f ∈ Gµ such that f +Gµ = hµ− gµ and set g′ := g+ f . We then have
w(h− ι(g′)) > µ, which brings us back to Case 1.

�

Now let us finish the prove of the Theorem. Take h, g ∈ H. Because w(g) ∈ Ψ, there
is g′ ∈ G with w(g) = ψ(g′). By the claim, there is h′ ∈ G with 0 <H ι(h′) ≤H |h| and
ψ(h′) = w(h). By (AC3) on (G,ψ), we have ψ(g′) < ψ(h′) + h′. Because ι preserves
the order, it follows that ι(ψ(g′)) <H ι(ψ(h′)) + ι(h′), hence ψH(g) <H ψH(h) + ι(h′).
Because ι(h′) ≤H |h|, it follows that ψH(g) < ψH(h) + |h|. This shows (AC3).

�

Now take ι, w and ψH as in Theorem 5.4.2. Keep in mind diagram (D) above. To
simplify notation, we will now write ≤ instead of ≤H . Set L := k((H)). Then L is a field
extension of K:

Proposition 5.4.3
The map ι induces an embedding of valued fields ρ : K → L defined by ρ(∑g∈G agt

g) :=∑
g∈G agt

ι(g). If k is ordered, then ρ is even an embedding of ordered fields.

Proof. Clearly, ρ(0) = 0 and ρ(1) = ρ(t0) = t0 = 1. Let a, b ∈ K. ρ(a+ b) = ∑
g∈G(ag +

bg)tι(g) = ∑
g∈G agt

ι(g) + ∑
g∈G bgt

ι(g) and ρ(ab) = ρ(∑
g∈G cgt

g) = ∑
g∈G cgt

ι(g) =∑
g∈G agt

ι(g).
∑
g∈G bgt

ι(g). We have v(ρ(a)) = ι(v(a)). Since ι is an embedding of
ordered groups, it follows that ρ is an embedding of valued fields. Now assume that k is
ordered. Assume a ≤ b and set h := v(a− b). Then v(ρ(a− b)) = ι(h). It follows that
a ≤ b⇔ ah − bh ≤ 0⇔ ρ(a) ≤ ρ(b). �

Therefore, we can view K as a subfield of L. In order to define a derivation on K, we
will first define a derivation on L, whose restriction to K will be the derivation we want.

Assume that, for each λ ∈ Ψ, a homomorphism of groups uλ : (Ĉλ,+)→ (k,+) has
been given. To define a derivation on L we proceed in three steps.

Step 1: Define D on the “fundamental monomials” of L, i.e define D(tgλ) for each gλ ∈ Ĉλ
for every λ ∈ Ψ.
Because of the condition of Proposition 5.4.1, we want to define D(tgλ) as an
element with valuation gλ + ι(λ). We thus define:

D(tgλ) := uλ(gλ)tgλ+ι(λ).

Note that the presence of the coefficient uλ(gλ) is essential to ensure that the
usual product rule of derivations is satisfied. Indeed, take gλ, hλ ∈ Ĉλ. We have
tgλthλ = tgλ+hλ . By our definition of D, we have D(tgλ+hλ) = uλ(gλ)tgλ+hλ+ι(λ) +
uλ(hλ)tgλ+hλ+ι(λ) = thλD(tgλ) + tgλD(thλ), which is what we want. However,
tgλ+hλ+ι(λ) + tgλ+hλ+ι(λ) , tgλ+hλ+ι(λ).
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Step 2: Extend D to all monomials by using a “strong Leibniz rule”.

Let g = ∑
λ∈Ψ gλ ∈ H. We naively define D(tg) by assuming that the usual product

rule of derivations also holds for infinite products, i.e. we set:

D(tg) :=
∑
λ∈Ψ

D(tgλ)tg−gλ = tg
∑
λ∈Ψ

uλ(gλ)tι(λ).

Note that the support of the family (uλ(gλ)tι(λ))λ∈Ψ is isomorphic to a subset of
the support of g so it is well-ordered. Therefore, the family (uλ(gλ)tι(λ))λ∈Ψ is
summable, which proves that the above formula makes sense.

Step 3: Extend D to L by strong linearity.

Let a = ∑
g∈H agt

g ∈ L. We naively define D(a) by assuming that D is strongly
linear, so we set:

D(a) :=
∑
g∈H

agD(tg) =
∑

0,g∈H

∑
λ∈Ψ

aguλ(gλ)tg+ι(λ). (†)

We need to check that formula (†) makes sense, i.e that the family (agD(tg))g∈supp(a)
is summable. In other words, we want to show:

1. The set A := ⋃
g∈supp(a) supp(D(tg)) = {g + ι(λ) | g ∈ supp(a), λ ∈ supp(g)} is

well-ordered.

2. For any g ∈ supp(a) and any λ ∈ supp(g), the set
Ag,λ := {(h, µ) | h ∈ supp(a), µ ∈ supp(h), g + ι(λ) = h+ ι(µ)} is finite.

The key to summability is the following fact which was proved in [AvdD02a, Proposition
2.3(1)]:

Lemma 5.4.4
For any λ, µ ∈ ι(Ψ) with µ , λ, ψH(λ− µ) > min(λ, µ).

Proof. Since ι(Ψ) = ψH(H,0), this is just a direct application of [AvdD02a, Proposition
2.3(1)]. �

The next two lemmas will help us prove the summability of (agD(tg))g∈supp(a):

Lemma 5.4.5
Let g, h ∈ H with g ≤ h and λ, µ ∈ Ψ such that h+ ι(µ) ≤ g + ι(λ). Then

µ ∈ supp(g)⇔ µ ∈ supp(h).
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Proof. The case g = h is trivial so assume g < h. It then follows from h+ ι(µ) ≤ g+ ι(λ)
that µ < λ. Moreover, 0 < h− g ≤ ι(λ)− ι(µ), hence (since ψH is H-type) ψH(h− g) ≥
ψH(ι(λ) − ι(µ)), hence by 5.4.4 ψH(g − h) > min(ι(λ), ι(µ)) = ι(µ). Now if µ were in
supp(g) but not in supp(h) then µ would also be in supp(g − h), hence w(g − h) ≤ µ
hence ψH(g − h) ≤ ι(µ), which is a contradiction. This proves the Lemma. �

Lemma 5.4.6
If (gn + ι(λn))n is a decreasing sequence in A, then (gn)n cannot be strictly increasing.
If (gn + ι(λn))n is strictly decreasing then (gn)n cannot be constant.

Proof. Assume that (gn + ι(λn))n is decreasing and (gn)n increasing. Then for all n ∈N
we have g0 ≤ gn and gn + ι(λn) ≤ g0 + ι(λ0), so by Lemma 5.4.5 λn ∈ supp(g0). Since
supp(g0) is well-ordered, it follows that (λn)n cannot be strictly decreasing. Since
(gn + ι(λn))n is decreasing, it follows that (gn)n cannot be strictly increasing. Moreover,
if (gn)n is constant, then (gn + ι(λn))n cannot be strictly decreasing. �

Proposition 5.4.7
(agD(tg))g∈supp(a) is a summable family.

Proof. Assume there exists a strictly decreasing sequence (gn + ι(λn))n in A. Without
loss of generality we can assume that (gn)n is either constant, strictly decreasing or
strictly increasing. Since gn ∈ supp(a) for all n, (gn)n cannot be strictly decreasing, so
without loss of generality (gn)n is either constant or strictly increasing. This contradicts
Lemma 5.4.6, and it follows that A is well-ordered. Now let h+ ι(µ) ∈ A and assume
there is an infinite subset {(gn, λn) | n ∈ N} of Ah,µ, with (gn, λn) , (gm, λm) for all
n , m. Without loss of generality we can assume that (gn)n∈N is either constant, strictly
decreasing or strictly increasing. Since the sequence (gn + ι(λn))n∈N is constant, it is
in particular decreasing, so (gn)n cannot be strictly increasing by Lemma 5.4.6; since
supp(a) is well-ordered, (gn)n cannot be strictly decreasing. Therefore, (gn)n is constant,
but then λn must also be constant, which contradicts (gn, λn) , (gm, λm) for all n , m.
This proves that Ah,µ is finite. �

Thus, formula (†) defines a map on L, and it is easy to see from its definition that it
is a derivation. It remains to see if (L, v,D) is a differential-valued field.

Proposition 5.4.8
Let a = ∑

g∈H agt
g ∈ L with v(a) , 0, g = v(a) and λ = w(g). Then v(D(a)) ≥ g + ι(λ),

and the coefficient of D(a) at g + ι(λ) is aguλ(gλ). In particular, if uλ(gλ) , 0 then
v(D(a)) = v(a) + ψH(v(a)).

Proof. Let h + ι(µ) ∈ A with h + ι(µ) ≤ g + ι(λ). Since g = v(a) and h ∈ supp(a) we
have g ≤ h. By Lemma 5.4.5, we have µ ∈ supp(g), and since λ = w(g) it follows that
λ ≤ µ, hence g + ι(λ) ≤ h+ ι(µ). This proves that g + ι(λ) = minA. Now note that if
g < h then h+ ι(µ) ≤ g + ι(λ) would imply µ < λ which would contradict µ ∈ supp(g),
so h+ ι(µ) = g + ι(λ) implies h = g and thus µ = λ. It follows that Ag,λ = {(g, λ)}, and
so by formula (†) the coefficient in front of tg+ι(λ) is just aguλ(gλ). �
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If uλ(gλ) = 0, then v(D(a)) is not equal to v(a) + ψH(v(a)). It follows that in
general, L endowed with the derivation D is not even a pre-differential valued field since
there may be constants whose valuation is not trivial. However, (L, v,D) becomes a
differential-valued field if we impose a condition on uλ:

Proposition 5.4.9
Assume that, for every λ ∈ Ψ, uλ is injective. The following holds:

(1) (L, v,D) is a differential-valued field with asymptotic couple (H,ψH).

(2) If moreover k is ordered, and if uλ is order-reversing for every λ ∈ Ψ, then (L,≤, D)
is a H-field with asymptotic couple (H,ψH).

Proof. It follows from Proposition 5.4.8 that D satisfies the conditions of Proposition 5.4.1.
Therefore, by Proposition 5.4.1, (L, v,D) is a differential-valued field with asymptotic
couple (H,ψ). �

Therefore, if each uλ is injective, then Proposition 5.4.9 tells us that formula (†) gives
us the derivation we want on L. Now let us define a derivation on K. For this, we use
the embedding ρ given by Proposition 5.4.3. Because ι(G) is stable under ψ, it is clear
from formula (†) that D(ρ(K)) ⊆ ρ(K). Therefore, we can define D on K as follows:

For a ∈ K, set D(a) := ρ−1(D(ρ(a))).

This gives us the following formula for D on K:

D(a) =
∑
g∈G

∑
λ∈Ψ

aguλ(gλ)tg+λ, where ι(g) =
∑
λ∈Ψ

gλ (‡)

Note that the definition of D on K depends on ι, because the definition of gλ depends
on ι. We have the following:

Proposition 5.4.10
Assume that, for every λ ∈ Ψ, uλ is injective. The following holds:

(1) (K, v,D) is a differential-valued field with asymptotic couple (G,ψ).

(2) If moreover k is ordered, and if uλ is order-reversing for every λ ∈ Ψ, then (K,≤, D)
is a H-field with asymptotic couple (G,ψ).

Proof. The fact that D is a derivation on K follows directly from the fact that ρ is
an embedding of fields. Now note that v(D(a)) = v(ρ−1(D(ρ(a))) = ι−1(v(D(ρ(a))) =
ι−1(v(ρ(a)) + ψH(v(ρ(a)))) = ι−1(v(ρ(a))) + ι−1(ψH(v(ρ(a)))) = v(a) + ψ(v(a)). Both
claims then follow from Proposition 5.4.1. �
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Thus, the method described above allows us to define a derivation on any field
of generalized power series k((G)) where (G,ψ) is a given H-type asymptotic couple.
However, if we want to have a differential-valued field, we saw that our method only
works if each Ĉλ (λ ∈ Ψ) is embeddable into (k,+) as a group. One can then wonder if
we could find a method which does not need this condition; the next proposition proves
that it is not possible:

Proposition 5.4.11
LetD be a derivation onK such that (K, v,D) is a differential-valued field with asymptotic
couple (G,ψ). Then for each λ ∈ Ψ, there exists a group embedding uλ from Cλ into
(k,+). If moreover k is ordered and (K,≤, D) is a H-field, then we can even choose uλ
so that it is order-reversing.

Proof. We start by showing the following claim:

Claim: Let h, g ∈ G be such that ψ(h) = ψ(g) and ψ(g − h) > ψ(g). Then D(tg) and
D(th) have the same leading coefficient.

Proof. By the product rule, we have D(th) = th−gD(tg) + tgD(th−g). Moreover, we have
v(th−gD(tg)) = h− g + g + ψ(g) = h+ ψ(g) and
v(tgD(th−g)) = g + h − g + ψ(h − g) = h + ψ(h − g). Since ψ(g − h) > ψ(g), we have
v(th−gD(tg)) < v(tgD(th−g)). It follows that v(D(th)) = v(th−gD(tg)). Therefore, the
leading coefficient of D(th) is the leading coefficient of th−gD(tg), which is equal to the
leading coefficient of D(tg). �

Now let λ ∈ Ψ. Set uλ(0) := 0. For any gλ ∈ Cλ, take any g ∈ Gλ such that
g + Gλ = gλ and define uλ(gλ) as the leading coefficient of D(tg). The claim makes
sure that uλ(gλ) does not depend on the choice of g, so this gives us a well-defined map
uλ : Cλ → k. One can easily check that this is a group homomorphism. The fact that
keruλ = {0} follows from the fact that D(a) , 0 when v(a) , 0. Now assume that k
is ordered and that (K,≤, D) is a H-field. Let λ ∈ Ψ and hλ, gλ ∈ Cλ with hλ < gλ.
Take g, h ∈ Gλ with g + Gλ = gλ and h + Gλ = hλ. We then have h < g. It follows
that v(th−g) < 0, hence th−g > C, which by (PH3) implies D(th−g) > 0, so the leading
coefficient uλ(hλ − gλ) = uλ(hλ)− uλ(gλ) of D(th−g) is positive, hence uλ(hλ) > uλ(gλ),
so uλ is order-reversing.

�

We can now formulate our answer to Question 2:

Theorem 5.4.12
Let k be a field (respectively, an ordered field) and (G,ψ) a H-type asymptotic couple. Let
(Ψ, (Cλ)λ∈Ψ) be the skeleton of the valuation ψ. The following conditions are equivalent:

(1) There exists a derivation D on k((G)) making (k((G)), v,D) a differential-valued
field (respectively, a H-field) with asymptotic couple (G,ψ).
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(2) For every λ ∈ Ψ, the group (Cλ,+) is embeddable into the group (k,+) (respectively,
the ordered group (Cλ,+,≤) is embeddable into the ordered group (k,+,≤)).

Moreover, if these conditions are satisfied, then we can choose D to be strongly linear by
using formula (‡).

Proof. The implication (1)⇒(2) follows directly from Propositions 5.4.11 (Note that the
existence of an order-reversing group embedding between two groups is equivalent to the
existence of an order-preserving embedding between them). Now assume that (2) holds
and let uλ : (Cλ,+)→ (k,+) be an embedding. Because k is a field, (k,+) is a divisible
group. It follows that uλ can be extended in a unique way to (Ĉλ,+). Then (1) follows
from 5.4.10. �

Remark 5.4.13: This idea to define D in 3 steps as above using “strong Leibniz rule”
and strong linearity comes from the work in [KM12]. However, we would like to point
out three major differences between the present work and the one done in [KM12]:

1. In [KM12], Kuhlmann and Matusinski worked in a more restricted framework,
where G is a Hahn product of copies of R. Our approach allows us to define a
derivation on K from any H-type asymptotic couple (G,ψ), without any further
assumption on G.

2. The key idea to make our approach work was to use ψ instead of vG as a valuation
to decompose G into a Hahn product of the Cλ’s. This allows us to write elements
of G as sums g = ∑

λ∈Ψ gλ indexed by Ψ and not by Γ. This contrasts with the
procedure of [KM12], where the group was decomposed into a Hahn product of
its archimedean components. Note that our definition of D would fail to work
if we used an archimedean decomposition, i.e if we wrote elements of G as sums
g = ∑

γ∈Γ gγ indexed by Γ. Indeed, applying step 2 in this context would yield the
formula: D(tg) = tg

∑
γ∈Γ uγ(gγ)tψ(gγ). For a fixed γ ∈ Γ, it could then happen

that the set {δ ∈ Γ | ψ(gγ) = ψ(gδ)} is infinite. This shows that the family
(uγ(gγ)tψ(gγ))γ∈Γ is not summable, which means that the formula for D(tg) is not
well-defined. This shows the necessity of using ψ, and not vG, as a valuation to
decompose the group.

3. In [KM12], the authors did not define any explicit derivation on K. Instead, they
assumed a derivation was already defined on their “fundamental monomials” and
gave conditions for this derivation to be extendable to the whole field via a strong
Leibniz rule and strong linearity.

Remark 5.4.14: The idea used in Step 1 to define the derivation on fundamental
monomials was already used in [AvdD02b], but only in the case where G is divisible and
admits a valuation basis (for the archimedean valuation), which is a strong restriction.
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5.4.2 Fields of power series admitting a H-derivation

We now want to use Theorem 5.4.12 to answer Question 1. This means we need to
characterize the ordered groups G which can be endowed with a map ψ satisfying the
properties of Theorem 5.4.12. Note that if (G,ψ) is a H-type asymptotic couple, then ψ
is consistent with vG, which means that ψ naturally induces two maps on Γ:

1. the map ψ̂ : Γ→ G defined by ψ̂(vG(g)) := ψ(g).

2. the map ω : Γ→ Γ ∪ {∞} defined by ω(γ) := vG(ψ̂(γ)).

The main idea to answer Question 1 is to characterize the maps on Γ which can be lifted
to a map ψ satisfying the conditions of Theorem 5.4.12. This is connected to the notion
of shift.

Definition 5.4.15
σ : Γ→ Γ ∪ {∞} is called a right-shift if σ(γ) > γ holds for every γ ∈ Γ.

The authors of [KM12] already found a connection between shifts on Γ and the
existence of Hardy-type derivations on K. In particular, it was showed in [KM12] that
a shift on Γ can be lifted to a derivation on R((G)), where G = Hγ∈ΓR. We show here
that any H-derivation comes from a shift on Γ (see Theorems 5.4.19 and 5.4.22).

We extend the notion of shift to maps from Γ to G≤0: we say that a map σ : Γ→ G≤0

is a right-shift if the map vG ◦ σ : Γ → Γ ∪ {∞} is a right-shift. The following two
lemmas show the connection between asymptotic couples and shifts. The increasing
right-shifts of Γ are exactly the maps induced by asymptotic couples of cut point 0:

Lemma 5.4.16
Let σ : Γ → G≤0 (respectively, ω : Γ → Γ ∪ {∞}) be a map. Then the following
statements are equivalent:

(i) There exists a map ψ : G,0 → G such that (G,ψ) is a H-type asymptotic couple
with 0 as a cut point and σ(vG(g)) = ψ(g) (respectively, ω(vG(g)) = vG(ψ(g))) for
all g ∈ G,0.

(ii) σ (respectively, ω) is an increasing right-shift.

Proof. Assume that (i) holds. Then by (ACH), σ must be increasing and since 0 is a cut
point then σ must be a right-shift. Moreover, by Lemma 5.2.9(i) we have σ(Γ) ⊆ G≤0.
It then follows that ω = vG ◦ σ is an increasing right-shift. Conversely, assume σ is an
increasing right-shift. Define ψ(g) := σ(vG(g)) for any g ∈ G,0. (AC2) is obviously
satisfied. Let g, h ∈ G,0. We have vG(g − h) ≥ min(vG(g), vG(h)), and since σ is
increasing it follows that σ(vG(g − h)) ≥ min(σ(vG(g)), σ(vG(h))) which proves (AC1).
Now assume 0 < h. Since σ is a right-shift, we have vG(ψ(h)) > vG(h), so h+ ψ(h) must
be positive. Since σ(Γ) ⊆ G≤0, ψ(g) is not positive, so (AC3) holds. Finally, (ACH)
follows directly from the fact that σ is increasing. Now let c be a cut point for ψ. If
c , 0, then Lemma 5.2.3(ii) implies vG(c) = vG(ψ(c)), hence vG(σ(vG(c))) = vG(c), which
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contradicts the fact that σ is a right-shift. Therefore, we must have c = 0, and ψ satisfies
the desired conditions. If we are only given an increasing right-shift ω : Γ→ Γ∪{∞}, we
can choose a gδ ∈ G<0 with vG(gδ) = δ for each δ ∈ ω(Γ). We can then set σ(γ) := gω(γ)
for every γ ∈ Γ. This gives us an increasing right-shift σ : Γ→ G≤0 with ω = vG ◦ σ. We
already proves that there exists ψ with 0 as a cut point and such that σ(vG(g)) = ψ(g).
This equality then implies ω(vG(g)) = vG(ψ(g)). �

Moreover, there is a natural way of associating a shift to any H-type asymptotic
couple:
Lemma 5.4.17
Let (G,ψ) be a H-type asymptotic couple. There exists an increasing right-shift
σ : Γ→ G≤0 such that for any g, h ∈ G,0, σ(vG(g)) ≤ σ(vG(h))⇔ ψ(g) ≤ ψ(h).
Proof. We make a case distinction following Proposition 5.2.13. Assume first that ψ
has a gap or a maximum c. Set ψ′ := ψ − c and let σ(vG(g)) := ψ′(g). By Lemma
5.2.10, 0 is a cut point for ψ′, so it follows from Lemma 5.4.16 that σ is an increasing
right-shift. It is clear that σ(vG(g)) ≤ σ(vG(h)) ⇔ ψ′(g) ≤ ψ′(h) holds. Since ψ′(g) ≤
ψ′(h) ⇔ ψ(g) ≤ ψ(h), it follows that σ has the desired properties. Now we just have
to consider the case where (G,ψ) has asymptotic integration. In that case, let χ be
the same map as in Remark 5.3.21. Now define σ by σ(vG(g)) := χ(g). Since χ is a
centripetal precontraction map, it follows that σ is an increasing right-shift. It is also
clear from the definition of σ that σ(vG(g)) ≤ σ(vG(h))⇔ χ(g) ≤ χ(h). Moreover, we
know from [AvdD02a, Proposition 2.3] that the map DG is strictly increasing, so

∫
is also

strictly increasing, so χ(g) = χ(h) ⇔ ψ(g) = ψ(h) holds, which proves that σ satisfies
the desired properties. �

For any increasing map σ : Γ→ G≤0 and any f ∈ σ(Γ), we now set
Gσ(f,+) := {g ∈ G | σ(vG(g)) ≥ f}∪ {0} and Gσ(f,−) := {g ∈ G | σ(vG(g)) > f}∪ {0}.
We have the following:
Lemma 5.4.18
Let σ : Γ→ G≤0 be an increasing map. Then for any f ∈ σ(Γ), the sets Gσ(f,+) and
Gσ(f,−) are convex subgroups of G.
Proof. Just note that σ ◦vG is a valuation and a coarsening of vG. The fact that Gσ(f,+)
and Gσ(f,−) are subgroups then follows from the fact that σ ◦ vG is a valuation, and
the fact that they are convex follows from Corollary 3.2.4. �

Lemma 5.4.18 allows us to define the group Hσ(f) := Gσ(f,+)/Gσ(f,−). Since
Gσ(f,−) is convex, Hσ(f) is naturally an ordered group. This allows us to partially
answer Question 1:
Theorem 5.4.19
Let G be an ordered abelian group and k a field (respectively, an ordered field). Let Γ
denote the value chain of G. Then there exists a H-derivation D on K := k((G)) making
(K, v,D) a differential-valued field (respectively, a H-field) if and only if there exists an
increasing map σ : Γ→ G≤0 such that the following holds:
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(1) The map vG ◦ σ is a right-shift.

(2) For any f ∈ σ(Γ), Hσ(f) is embeddable into (k,+) (respectively, (k,+,≤)).

Proof. Assume that (K, v,D) is a differential-valued field having a H-type asymptotic
couple (G,ψ). By Theorem 5.4.12, it follows that Cλ is embeddable in (k,+) for every
λ ∈ Ψ. Now take σ as in Lemma 5.4.17. Let f ∈ σ(Γ), f = σ(vG(g)) for some
g ∈ G. We have σ(vG(h)) ≥ f ⇔ σ(vG(h)) ≥ σ(vG(g)) ⇔ ψ(h) ≥ ψ(g). It follows that
Gσ(f,+) = Gλ, where λ = ψ(g). Similarly, Gσ(f,−) = Gλ, hence Hσ(f) = Cλ, so Hσ(f)
is embeddable into (k,+). If (K,≤, D) is a H-field then by Theorem 5.4.12, Hσ(f) must
be embeddable as an ordered group in (k,+,≤). This proves one direction of the theorem,
let us prove the converse. Assume that such a σ as in the theorem exists. By Lemma
5.4.16, there exists ψ on G making (G,ψ) a H-type asymptotic couple and such that σ
is induced by ψ. It follows that, for each λ ∈ Ψ, we have λ ∈ σ(Γ), Gλ = Gσ(λ,+) and
Gλ = Gσ(λ,−). By assumption, it follows that each Cλ is embeddable into (k,+), and
the existence of D then follows from Theorem 5.4.12. If each Hσ(f) is embeddable into
(k,+,≤), then so is each Cλ, and we conclude by Theorem 5.4.12 again. �

Remark 5.4.20: If we are given a σ as in Theorem 5.4.19, we can explicitly construct
D. We first define ψ on G by ψ(g) := σ(vG(g)). This gives us a H-type asymptotic
couple (G,ψ). We then define D with formula (‡) above.

5.4.3 Hardy-type derivations

The goal of this section is to characterize fields of power series which can be endowed
with a Hardy-type derivation as defined in [KM12]. If (G,ψ) is an asymptotic couple,
we say that ψ is of Hardy type if (G,ψ) is H-type and ψ(g) = ψ(h)⇒ vG(g) = vG(h)
for all g, h ∈ G,0. We say that a derivation D on an ordered field (K,≤) is of Hardy
type if (K,≤, D) is a H-field with asymptotic couple (G,ψ) such that ψ is of Hardy
type. This coincides with the notion of Hardy-type derivation defined in [KM12]. The
natural derivation of a Hardy field is an example of a Hardy-type derivation. Note that
if ψ is Hardy-type, we have vG(g) = vG(h)⇔ ψ(g) = ψ(h), which means that ψ and vG
are equivalent as valuations. In particular, the valued groups (G, vG) and (G,ψ) have
the same components. We will denote by (Γ, (Bγ)γ∈Γ) the skeleton of the valued group
(G, vG).

In general, H-derivations are not necessarily Hardy-type derivations. However, the
two notions coincide in a field of power series if the field of coefficients is archimedean:

Proposition 5.4.21
Let k be an archimedean ordered field, G an ordered abelian group, K := k((G)) and D
a derivation on K. Then (K,≤, D) is a H-field if and only if D is of Hardy-type.

Proof. Assume (K,≤, D) is a H-field with asymptotic couple (G,ψ). By Theorem 5.4.12,
each component of the valued group (G,ψ) is embeddable as an ordered group into
(k,+,≤). It follows that each component of the valued group (G,ψ) is archimedean,
and it follows that ψ must be of Hardy type. Indeed, if ψ is not of Hardy type, then
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there are g, h ∈ G with vG(g) > vG(h) and ψ(g) = ψ(h). It follows that g, h are not
archimedean-equivalent. Now set λ := ψ(h). Then g + Gλ, h + Gλ are two non-zero
elements of Cλ, but they are not archimedean-equivalent, which is a contradiction. �

We can now answer a variant of Question 1, where D is required to be of Hardy type.
The criterion for the existence of D in this case is simpler than the criterion for the
existence of a H-derivation given by Theorem 5.4.19:

Theorem 5.4.22
Let G be an ordered abelian group and k an ordered field. Let Γ denote the value chain
of G. Then there exists a Hardy-type derivation D on K := k((G)) if and only if the
following conditions are satisfied:

(1) Each Bγ is embeddable as an ordered group into (k,+,≤).

(2) There exists an increasing right-shift τ : Γ→ Γ ∪ {∞} such that for any δ ∈ τ(Γ),
τ−1(δ) is embeddable as an ordered set into v−1

G (δ) ∩G≤0.

Proof. Assume there exists a Hardy-type derivation D on K, denote by ψ the map
induced by the logarithmic derivative on G. By Theorem 5.4.12, each Cλ is embeddable
into (k,+,≤). Since D is Hardy-type, we have that, for every γ ∈ Γ, there exists λ ∈ Ψ
such that Bγ = Cλ. This shows (1). By Theorem 5.4.19, there exists σ : Γ→ G≤0 such
that τ := vG ◦ σ is an increasing right-shift. Now let δ ∈ τ(Γ). For any γ ∈ τ−1(δ), set
φδ(γ) := σ(γ). Then φδ is an order-preserving map from τ−1(δ) to v−1

G (δ) ∩G≤0.
Conversely, assume that (1) and (2) hold. Denote by φδ the embedding from τ−1(δ)

to v−1
G (δ)∩G<0 for every δ ∈ τ(Γ). For any γ ∈ Γ, define σ(γ) := φδ(γ), where δ := τ(γ).

σ is clearly an order-preserving right-shift, so by Lemma 5.4.16 there is ψ on G such that
σ is induced by ψ. Note that σ is moreover injective, which implies that ψ is Hardy-type.
It then follows from (1) that Cλ is embeddable into (k,+,≤) for every λ ∈ Ψ. The
existence of D is then given by Theorem 5.4.12.

�

Remark 5.4.23: The proof of Theorem 5.4.22 gives an explicit construction of ψ from
τ . Together with formula (‡), this gives us an explicit construction of D from τ .

In the case where k contains R, we can overlook condition (1) of Theorem 5.4.22:

Corollary 5.4.24
Let k be an ordered field containing R and G an ordered abelian group. Let Γ denote the
value chain of G. Then there exists a Hardy-type derivation D on K := k((G)) if and
only if there exists an increasing right-shift τ : Γ→ Γ ∪ {∞} such that for any δ ∈ τ(Γ),
τ−1(δ) is embeddable as an ordered set into v−1

G (δ) ∩G≤0.

Proof. Since each Bγ is archimedean, and since k contains R, condition (1) of Theorem
5.4.22 is always satisfied, so D exists if and only if condition (2) of Theorem 5.4.22 is
satisfied. �
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Finally, if k is archimedean, we can simplify Theorem 5.4.19 to give a criterion for
the existence of a H-derivation on K:

Corollary 5.4.25
Let k be an archimedean ordered field and G an ordered abelian group with value chain
Γ. There exists a derivation D on K := k((G)) making (K,≤, D) a H-field if and only if
if and only if the following conditions are satisfied:

(1) Each Bγ is embeddable as an ordered group into (k,+,≤).

(2) There exists an increasing right-shift τ : Γ→ Γ ∪ {∞} such that for any δ ∈ τ(Γ),
τ−1(δ) is embeddable as an ordered set into v−1

G (δ) ∩G≤0.

Proof. By Proposition 5.4.21, there exists a H-derivation on K if and only if there exists
a Hardy-type derivation on K. The claim then follows directly from Theorem 5.4.22. �

5.4.4 Realizing a linearly ordered set as a principal differential rank

Assume (K, v,D) is a pre-differential valued field with principal differential rank P and
principal unfolded differential rank Q. We know by Proposition 5.3.17 that P is either a
principal final segment of Q or equal to Q. The goal of this section is to show a converse
statement, i.e that any pair (P,Q) of totally ordered sets, where P is a principal final
segment of Q or Q = P , can be realized as the pair “(principal differential rank, principal
unfolded differential rank)” of a certain field of power series endowed with a Hardy-type
derivation.

The construction is done in three steps: we first show that any totally ordered set
Q can be realized as the principal ω-rank of a certain ordered set. We actually give an
explicit example. We then show that there exists an asymptotic couple (G,ψ) whose
principal ψ-rank is P and whose principal unfolded ψ-rank is Q, where P is any principal
final segment of Q or Q itself. Finally, we use Theorem 5.4.12 to obtain the desired field.

Example 5.4.26
We want to give an explicit example of an ordered set (Γ,≤) with arbitrary principal
ω-rank.

(a) We first construct an example of principal ω-rank 1. Take Γ1 := Z ordered as usual
an define ω1(n) := n + 1. Then it is easy to check that ω1 is an order-preserving
right-shift and that the principal ω1-rank of (Γ1,≤) is 1.

(b) We now construct an example which has principal ω-rank (Q,≤), where (Q,≤) is an
arbitrary totally ordered set. Define Γ := Q× Γ1 and order Γ as follows:
(a, γ) ≤ (b, δ)⇔ (a <∗ b) ∨ (a = b ∧ γ ≤ δ), where <∗ denotes the reverse order of <.
Now define ω(a, n) := (a, ω1(n)). One easily sees that ω is an increasing right-shift.
Note also that ω is injective. Now consider the map: a 7→ {(b, n) ∈ Γ | a ≤ b, n ∈ Z}
from Q to the set of final segments of (Γ,≤). One can see that this is an order-
preserving bijection from (Q,≤) to the principal ω-rank of (Γ,≤), so (Q,≤) is the
principal ω-rank of (Γ,≤).
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Proposition 5.4.27
Let Q be a totally ordered set and P a final segment of Q such that P is either equal to
Q or a principal final segment of Q. Then there exists a H-type asymptotic couple (G,ψ)
whose principal ψ-rank is P and whose principal unfolded ψ-rank is Q. Moreover, we
can choose (G,ψ) so that ψ is of Hardy type.

Proof. Let (Γ,≤) be an ordered set with an injective increasing shift ω : Γ→ Γ such that
the principal ω-rank of (Γ,≤) is Q (take for instance Example 5.4.26(b)). Let G := H

γ∈Γ
R.

We know from Lemma 5.4.16 that there exists a map ψ0 on G,0 such that (G,ψ0) is a
H-type asymptotic couple with cut point 0 and such that ω is the map induced by ψ0
on Γ. Since ω is injective, it follows that ψ0 is of Hardy type. By proposition 5.3.17(4),
the principal unfolded ψ0-rank of (G,ψ0) is equal to its principal ψ0-rank. Moreover, by
Theorem 5.3.3, the principal ψ0-rank of (G,ψ0) is equal to the principal ω-rank of (Γ,≤),
which by construction is equal to Q. We now assimilate Q with the set of non-trivial
ψ0-principal convex subgroups of G.

If Q = P , then set ψ := ψ0, and then (G,ψ) satisfies the condition we wanted. Now
assume P , Q. We know that P is a principal final segment of Q, which means that
there is a ψ0-principal convex subgroup H of G such that P is the set of ψ0-principal
convex subgroups of G containing H. Now let c ∈ H be such that H is ψ0-principal
generated by c and set ψ(g) := ψ0(g) + c. Obviously, ψ is Hardy-type. Now note that c
is either a gap or a maximum for ψ: indeed, by Lemma 5.2.9(i), we have for all g > 0:
ψ0(g) ≤ 0 < ψ0(g) + g, hence ψ0(g) + c ≤ c < ψ0(g) + c+ g i.e. ψ(g) ≤ c < ψ(g) + g. It
then follows from Proposition 5.3.17(5) that Q is the principal unfolded ψ-rank of G.
Moreover, it follows from Lemma 5.2.9(ii) that c is a cut point for ψ. It then follows from
Proposition 5.3.17(2) that the principal ψ-rank of G is isomorphic to the set of elements
of Q containing c. By choice of c, this set is equal to P . �

We can now state our Theorem:

Theorem 5.4.28
Let Q be a totally ordered set and P a final segment of Q such that P is either equal
to Q or a principal final segment of Q. Then there exists an ordered field k, an ordered
abelian group G and a Hardy-type derivation D on K := k((G)) such that (K,≤, D) is a
H-field of principal differential rank P and of principal unfolded differential rank Q.

Proof. By Proposition 5.4.27, there exists a H-type asymptotic couple (G,ψ) which has
principal ψ-rank P and principal unfolded ψ-rank Q, and such that ψ is Hardy-type. Now
set K := R((G)). Since ψ is Hardy-type, each Cλ is archimedean, so it is embeddable
into (R,+,≤). By theorem 5.4.12, there exists a derivation D on K making (K,≤, D) a
H-field with asymptotic couple (G,ψ). By Theorem 5.3.3, the principal differential rank
of (K,≤, D) is equal to P and by definition the principal unfolded differential rank of
(K,≤, D) is equal to Q.

�
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Remark 5.4.29: It would be interesting to improve Theorem 5.4.28 by requiring K
to have asymptotic integration. However, our construction in Proposition 5.4.27 gives
us an asymptotic couple with a gap. In [Geh17, Section 4], Gehret gave methods to
extend a given asymptotic couple with a gap into an asymptotic couple with asymptotic
integration. However, this construction changes the unfolded differential rank, so we
cannot use it in Theorem 5.4.28. It is unknown if Theorem 5.4.28 remains true if we
require the field to have asymptotic integration.
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